

Early praise for Programming WebRTC

Programming WebRTC is an exceptional book that teaches WebRTC theory through

practical application of the specification. Through an iterative approach to imple-

menting a WebRTC application, Programming WebRTC somehow makes an ex-

tremely difficult and nuanced topic approachable and easy to understand. It is a

must-read book on the topic.

➤ Stephen Watzman

Software Engineer

Karl has a passion for WebRTC that shows in this book, and combining that with

his experience as an educator and a technologist, he’s crafted a book that is

very accessible and informative. WebRTC development has a lot of nuances, but

Karl approaches the topic in a way that is both reader-friendly and technically

comprehensive. I highly recommend it to anyone new to WebRTC!

➤ Arin Sime

CEO/Founder, WebRTC.ventures

Dr. Karl Stolley, a developer, technical author, and prominent WebRTC expert,

has consistently addressed the field’s challenges and advancements in conferences,

including the IIT RTC, and other academic settings. His insights highlight the

dynamic nature of WebRTC implementations, yet underscore their current robust-

ness through practical examples often employed in his teaching.

➤ Alberto Gonzalez Trastoy

Software Consultant and CTO, WebRTC.ventures

This book expertly blends technical depth with humor, making WebRTC accessible.

Even complex topics like signaling channels are tackled with wit, reminding us

that a well-designed interface beats the “Imagine this doesn’t look like garbage”

approach any day.

➤ Paul Freiberger

co-author, Fire in the Valley

Programming WebRTC
Build Real-Time Streaming Applications for the Web

Karl Stolley

The Pragmatic Bookshelf
Dallas, Texas

For our complete catalog of hands-on, practical, and Pragmatic

content for software developers, please visit https://pragprog.com.

Contact support@pragprog.com for sales, volume licensing, and support.

For international rights, please contact rights@pragprog.com.

The team that produced this book includes:

Dave ThomasPublisher:

Janet FurlowCOO:

Susannah DavidsonExecutive Editor:

Michael SwaineDevelopment Editor:

Vanya WryterCopy Editor:

Potomac Indexing, LLCIndexing:

Gilson GraphicsLayout:

Copyright © 2024 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or

transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

When we are aware that a term used in this book is claimed as a trademark, the designation is

printed with an initial capital letter or in all capitals.

The Pragmatic Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf,

PragProg and the linking g device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes no

responsibility for errors or omissions, or for damages that may result from the use of information

(including program listings) contained herein.

ISBN-13: 978-1-68050-903-8

Encoded using recycled binary digits.

Book version: P1.0—July 2024

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Contents

Acknowledgments ix

Preface xi

1. Preparing a WebRTC Development Environment 1

Installing Node.js 2

Downloading the Supporting Code

and Installing Dependencies 2

Serving HTTPS in Development 4

Choosing a Development Browser 6

Starting and Stopping the Server 7

2. Working with a Signaling Channel 11

Preparing a Basic Peer-to-Peer Interface 11

Adding Video Elements: Self and Peer 14

Styling the Core App Elements 17

Adding Functionality to the Call Button in JavaScript 22

Positioning WebRTC as a Front-End Technology 25

Using a Lightweight Signaling Channel 27

Connecting to the Signaling Channel 32

3. Establishing a Peer-to-Peer Connection 37

Requesting User-Media Permissions 37

Setting Up the Peer Connection 42

Building Connection Logic to the “Perfect Negotiation” Pattern 51

Receiving Media Tracks 59

Testing Out Your First Peer-to-Peer App 60

4. Handling Data Channels 63

Adding Basic Visual Effects to User Videos 64

Determining Peer-Connection States 68

Applying Filters Remotely with Data Channels 71

Uniquely Identifying Data Channels 73

Adding a Text-Chat Feature 75

Adding Logic to Handle Chat Events 81

Setting Up the Text-Chat Data Channel 83

Building a Message Queue 86

5. Streaming Complex Data 93

Structuring Chat Messages in JSON 93

Adding Mic and Camera Toggles 98

Refining the Initial Properties on Self and Peer 99

Building A/V Toggles 105

Sharing Features over Data Channels 112

Sending Images over the Chat 117

Sending and Receiving Binary Data 125

6. Managing Multipeer Connections 133

Learning from a Failed Peer-to-Peer Call 134

Working with a Multipeer-Ready Signaling Channel 136

Revising the Signaling Logic on the Client 139

Generating Video Structures on the Fly 145

Initializing Peers as Needed 150

Fleshing out the Skeletal Signaling Callbacks 152

Working with Peer IDs in the handleScSignal() Callback 156

Restructuring WebRTC Callbacks with Closures 159

Sharing Features over Multipeer Data Channels 165

7. Managing User Media 173

Determining Device Availability 174

Detecting Device Changes 182

Removing User Media for Remote Peers 187

Programmatically Recognizing Denied Media Permissions 190

Setting and Applying Media Constraints Objects 193

8. Deploying WebRTC Apps to Production 197

Configuring a WebRTC App for Public Deployment 198

Configuring a Server to Host Your WebRTC App 202

Deploying Your App with Git 207

Monitoring Your App with PM2 210

Configuring Nginx for Reverse Proxies 212

Setting Up Your Own STUN/TURN Server 214

Contents • vi

A1. Connection Negotiation in Legacy Browsers 225

Implementing Backward-Compatible Fixes 225

Bibliography 231

Index 233

Contents • vii

Acknowledgments

I wrote this book over the span of two very different careers and three jobs,

with a global pandemic thrown in for good measure. Screenshots found

throughout the book document my various hair lengths and unkempt beard

for posterity.

Thank you to my past and current employers, supervisors, and coworkers

who in ways big and small graciously accommodated and supported my work

on this: Ray Trygstad, Nina Kuruvilla & Kwindla Kramer, and Alya Abbott &

Tim Abbott.

Thank you to the students in my WebRTC classes who read and worked

through the earliest iterations of this book, providing useful feedback that

shaped what this work would ultimately become: Hareem Akram, Jon Andoni

Baranda, Yelitza Castro, Chia-Chi Chang, Julaam J. Diop, Michael P. Kaczowka,

David Singer, Rida Tariq, and Naveed Zahid.

Thank you to my professional colleagues and friends who offered encourage-

ment, interest, and support for this project: Nancy DeJoy, Molly Holzschlag,

Carrie Malone, Jayne Mast, Kate McLaughlin, Adria Neapolitan, Brian Okken,

Arin Sime, Alberto Gonzalez Trastoy, and Brian Watts.

Thank you to my technical reviewers: Martin Deen, Tsahi Levent-Levi, and

Kimberlee Johnson. Additional thanks to Dasha Day Hisholer for also

reviewing this work while it was struggling to become a proposal. Special

thanks to Aman Agrawal for his careful review of the completed book. I am

solely to blame for any errors and shortcomings that remain.

Thank you to the team at or closely orbiting Pragmatic Programmers: Tammy

Coron, Tim Mitra, Erica Sadun, and especially Margaret Eldridge who, among

other things, shepherded this work in its proposal form to a head-spinningly

quick acceptance.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

A special thank you to my editor, Michael Swaine, for his encouragement,

bone-dry wit, and saint-like patience in helping me see this book through to

completion. Working with him was the best writing experience of my career.

And the deepest thank you to my family: to my dog, Hank, for his countless

hours of unflagging dog assistance and posing for screenshots in front of a

laptop. And to Amy, my incredible wife of almost 20 years, for her patience,

support, and boundless love: you are the very best one.

Acknowledgments • x

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Preface

WebRTC—or Web Real-Time Communication—is a standardized API exposed

in all modern web browsers. The World Wide Web Consortium accepted the

WebRTC specification as a full recommendation after a long decade of devel-

opment.1 Couple a complete, stable specification with browser support for

WebRTC ranging from rock-solid to serviceable, and you find yourself in a

perfect environment for developing and deploying real-time web applications

in the browser.

Like any Web API, WebRTC doesn’t enjoy a perfectly spec-aligned implemen-

tation in any browser. But this book will start you on your journey to devel-

oping real-time streaming applications, all according to the certainty of a

stable specification. You’ll also learn to write elegant, backward-compatible

code to get your WebRTC apps working across the widest possible range of

recent and modern browsers. Desktop and mobile devices, too. Support for

WebRTC is everywhere.

Your WebRTC Journey

You’ll start your journey by getting straight to work on building a basic

WebRTC application to support peer-to-peer video calling. Chapter by chapter,

you’ll refine that app and its core logic to then spin up additional WebRTC-

powered apps that will have your users sharing all manner of data with one

another, all in real time.

This book treats WebRTC as a part of the Web Platform. No third-party

libraries or heavy downloads are required for you to make your way through

this book, or for your users to use the WebRTC apps you build: you’ll be

writing and strengthening your knowledge of modern HTML, CSS, and Java-

Script to get the most out of browser-native WebRTC APIs.

1. https://www.w3.org/TR/webrtc/

report erratum • discuss

https://www.w3.org/TR/webrtc/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

From the outside, WebRTC is pretty daunting. Okay, really daunting. I’m

proud of you just for peeking inside this book. But don’t put it down just

because WebRTC will challenge you and twist your brain around in some

profound ways. That’s both expected and totally okay. It means you’re on the

path. We’ll walk it together. Things look better and more manageable from

the inside.

This book will get you on the path to where you want to go with WebRTC right

away. You won’t find any throwaway code or opaque, puzzling examples here.

We’re going to be developing real WebRTC applications together from the

outset. And it will be from those real, functioning applications that we will

tease out how WebRTC works. By the end of your journey, you will have all

the foundational skills and knowledge you need to build your own wildly

imaginative real-time applications. And because work on the WebRTC speci-

fication continues, you will also learn how to stay on top of the latest changes

and discussions.

Who Should Read This Book?

This book is aimed at intermediate and advanced web designers and developers

looking to explore and implement real-time communication features in new

or existing web applications.

Whether you consider yourself a designer or a developer, WebRTC is one of

those rare Web APIs where design and development converge head on: not

just conceptually, but in the actual code you’ll be writing. WebRTC is a front-

end technology that requires only the teeniest, tiniest server-side component,

which I have provided for you in the codebase that accompanies this book.

Almost all of your work will be run and rendered directly in the browser.

You should have at least some knowledge of JavaScript, along with HTML

and CSS. I’ll do my best to fill in any gaps that might arise for you and point

out additional books and resources that you might find useful. You’ll find

yourself working with other Web APIs in this book—not just WebRTC. Many

of those will equip you with added knowledge to enhance your work on all

kinds of web applications, whether or not they include a real-time component.

What’s Covered (And What’s Not)

This book covers WebRTC’s APIs as natively implemented in recent and

modern web browsers. You’ll be working with those APIs directly in vanilla

JavaScript to build your knowledge and command of WebRTC independent

of any third-party libraries. The promise of WebRTC has always been to provide

Preface • xii

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

real-time communication right in the browser without requiring users to

download special plugins or add-ons. Your users’ browsers already have

everything needed to power your real-time app. All you have to do is build it!

But to build a stunningly accessible and usable real-time application requires

more than just a strong JavaScript foundation. It is an all-too-common mistake

to think of WebRTC as just another conduit for media streams and application

data. Because of its real-time component, WebRTC knits together two or more

remote interfaces where real, live users are interacting and cooperating with

one another. Building a WebRTC app without thinking carefully about the

user interface would be like building a bicycle without the seat and handlebars.

Ouch, right? So don’t be surprised to spend some time—perhaps more than

you’d expect—working with HTML and CSS, too.

You will be doing WebRTC development within the friendly confines of your

local network for most of the book, but a chapter at the end will walk you

through the necessary requirements and steps for deploying your real-time

applications to the web, and testing them out.

So what’s not covered? In a phrase, this book does not cover issues of scale

or millisecond-obsessed WebRTC optimization. While there are a growing

number of server-, platform-, and system-based implementations of WebRTC,

as well as numerous WebRTC-based communication platforms as a service

(CPaaS), those are all beyond the scope of this book. That means you won’t

find coverage here of scaling apps up to handle dozens or thousands of con-

current users supported by server-side technologies like selective forwarding

units (SFUs) or multi-conference units (MCUs). Although you will work with

a small server that provides a signaling channel, that is the extent of the

server-side content in this book.

And while you’ll learn about some fundamentals of streaming-media CODECs

and optimization, this book does not go deep on those topics. Nor does it

encourage session description protocol (SDP) “munging” to coerce browsers

to use a particular CODEC, or fiddling with RTCRtpTransceiver objects. Native

browser code for those matters is better tuned and tested than app-based

adjustments likely ever will be.

However, the core principles of WebRTC that we’ll look at in depth—working

with a signaling channel, establishing peer connections, adding and managing

media streams and data channels—will have you well prepared to tackle

WebRTC implementations and third-party services wherever you might

encounter them.

report erratum • discuss

What’s Covered (And What’s Not) • xiii

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

How This Book Is Organized

This book is organized in a set of sequential chapters. It’s meant to be read

more or less front to back. If that feels overly prescriptive and stifling, or if

you’ve just got a rebellious streak that you like to take out on tech books, try

anyway to make it through at least the first four chapters before you jump

around to the later ones whose topics most interest you.

In Chapter 1, you’ll learn how to set up a development environment that will

play nicely with WebRTC. You’ll also learn how to get the most out of the

starter and example code that accompanies the book.

With your development environment set up and tested out, Chapter 2 dives

right into the only necessary server component of WebRTC apps: a signaling

channel. As part of working with the signaling channel, you’ll start to build

the basic interface of your first WebRTC app, which provides peer-to-peer

video calls.

Chapter 3 is where you’ll really hit your stride working directly with WebRTC’s

APIs, all of which orbit around the RTCPeerConnection interface. By the end of

this chapter, you’ll be streaming video between two connected peers which—to

start—will be two browser windows on your desktop.

Streaming real-time user video and audio is WebRTC’s most famous feature.

But that’s not its only feature. Over the course of Chapter 4 and Chapter 5,

you’ll go from streaming basic data to streaming more complex data—

including JSON as well as images and other binary files. WebRTC provides

a powerful and flexible low-level interface for streaming arbitrary application

data between two peers, all in real time. You’ll learn to command that interface,

and abstract away subtle differences found in browsers with incomplete

WebRTC implementations. You’ll even bring what you learn full circle by

safely implementing user audio to complete the silent streaming video you’ll

work with at first.

Buckle your seatbelt when you get to Chapter 6. Connecting two peers is

one thing. But how about connecting three or more peers? Chapter 6 will

have you establishing WebRTC calls using a mesh-network topography to

enable multiple peers to join the same call simultaneously. You’ll also experi-

ence the theoretical and practical upper limits on the number of peers who

can join a call on a mesh network, depending on what your app does and the

amount of bandwidth and processing power it consumes.

In Chapter 7, you’ll work more in depth with the MediaDevices interface on the

Media Capture and Streams API to do things like help users determine what

Preface • xiv

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

mics and cameras they have available, and handle edge cases in your logic

when either there are no devices available, or users deny permission to access

them. You’ll learn to do some minor media-stream optimization, too, with the

aid of the built-in, real-time statistics that WebRTC implementations provide

in the browser.

Closing out the body of the book, in Chapter 8, you’ll learn how to deploy

WebRTC applications to production. You’ll find a concrete deployment

example, but you’ll also learn how to adjust that example to suit your own

needs and preferences.

And finally, you will find an appendix at the end of the book that will show

you the necessary fixes for making your WebRTC applications work with

legacy browsers that don’t support the WebRTC APIs necessary for perfect

negotiation.

Online Resources

You can download the source code for studying and working alongside the

examples in the book from pragprog.com.2 If you spot an error or even just

come across something that is blocking your path forward in the book, con-

sider this my personal invitation to you to join and post to the book’s forum

on DevTalk.3

If you would like to contact me directly, I am available on Mastodon at

@stolley@hachyderm.io.4 I also blog about WebRTC and other web topics at

https://stolley.dev/

All right. Enough with the formalities that we classy preface readers enjoy

while thoughtfully adjusting our monocles from the comfort of a high-back

leather chair. Let’s pop out the monocle, pull open a laptop, and get down to

it: it’s time to set up a development environment that will be your trusty

companion on your exciting, monocle-free journey with WebRTC.

2. https://pragprog.com/titles/ksrtc/
3. https://devtalk.com/books/programming-webrtc/errata
4. https://hachyderm.io/@stolley

report erratum • discuss

Online Resources • xv

http://@stolley@hachyderm.io
https://stolley.dev/
https://pragprog.com/titles/ksrtc/
https://devtalk.com/books/programming-webrtc/errata
https://hachyderm.io/@stolley
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 1

Preparing a WebRTC

Development Environment

Exciting new technologies often require developers to level up the sophistica-

tion of their development environments. WebRTC is no exception. Almost

everything you’ll be doing with WebRTC happens in and between browsers.

While you’ll be writing HTML, CSS, and JavaScript just as you would for any

other web application, there are some important things to set up to smooth

your way through the rest of the book and your work building real-time web

applications.

In this chapter, you’ll install Node.js if you haven’t already. You’ll also learn

where to get yourself a copy of the code that accompanies this book, and

you’ll take a brief tour of the code’s organization so you can find what you

need, when you need it. You’ll then generate and make use of your own self-

signed certificates for serving HTTPS in development. HTTPS is necessary to

fully and reliably access many newfangled, highfalutin Web APIs—including

WebRTC, even in development.

You’ll choose a WebRTC-ready development browser (spoiler: Chrome or Firefox),

fire up the server that’s packed in with the book’s code to serve your in-progress

work or the completed examples, and heroically machete your way through the

dire security warnings that your browser will throw at you over your self-signed

certificates.

It’ll be a little bit of work, but once you’ve set this all up for yourself, you

shouldn’t have to think about any of it again.

All of the setup here should work without much fuss or drama on Unix-like

operating systems, including macOS.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Install Windows Subsystem for Linux

If you’re developing on Windows, you’ll need to install and use

Windows Subsystem for Linux.1

Installing Node.js

The small server I’ve written to support your local WebRTC development relies

on Node.js, a wildly popular JavaScript runtime that you might already be

familiar with and have installed. Let’s figure out if you’ve got a copy of Node.js

already, and install one if you don’t.

If you’re not sure if you have Node.js, run which node on your command line.

You’ll see output showing the path to your Node.js installation, if you have

one (now might be a good time to update it, if you haven’t in a while).

If you see no output or know for a fact you aren’t running Node.js yet, no

problem: there are a few different ways to install it. You can find, download,

and run a Node.js installer for your operating system of choice from nodejs.org.2

Alternatively, if your operating system has a package manager available, such

Homebrew for MacOS3 or your native package manager for Linux, you can

install Node.js that way.

However you opt to install Node.js, it’s generally a good idea to be running

the latest LTS version.4

As a sanity check, once you’ve installed Node.js, you can run which node and

which npm on your command line, which should report the locations where

Node.js and its own package manager, npm, were installed. That’s simply

confirmation that you’ve successfully installed Node.js, and also that your

command line knows where to find it.

Downloading the Supporting Code

and Installing Dependencies

Once you’ve set up Node.js, you should download the code for this book from

pragprog.com.5 Once you’ve downloaded and decompressed the ZIP file,6 move

1. https://learn.microsoft.com/en-us/windows/wsl/install
2. https://nodejs.org/en/download/
3. https://brew.sh/
4. https://nodejs.org/en/about/previous-releases
5. https://pragprog.com/titles/ksrtc/programming-webrtc/
6. https://media.pragprog.com/titles/ksrtc/code/ksrtc-code.zip

Chapter 1. Preparing a WebRTC Development Environment • 2

report erratum • discuss

http://nodejs.org
http://pragprog.com
https://learn.microsoft.com/en-us/windows/wsl/install
https://nodejs.org/en/download/
https://brew.sh/
https://nodejs.org/en/about/previous-releases
https://pragprog.com/titles/ksrtc/programming-webrtc/
https://media.pragprog.com/titles/ksrtc/code/ksrtc-code.zip
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the unzipped code/ directory somewhere you can conveniently access from the

command line. You might also want to rename the directory to something

more recognizable than code/.

Having done that, use your command line to navigate to the directory you’ve

set up. Once you’re there, you need to install the dependencies for the server

that you’ll rely on as you work through the book. Run this command:

$ npm install

A bunch of output will fill the terminal screen, but installation should only

take a few minutes at most. Probably less.

If you see warnings about deprecated packages, you can try running npm audit
fix or the more aggressive npm audit fix --force to try and resolve matters. But for

doing WebRTC development, it’s okay to ignore such warnings altogether.

Finding Your Way Around the Code Directory

I’ve prepared the book’s accompanying code to include the examples that I’ve

written and a separate starter directory for you to follow along in the book

and experiment on your own.

Here is a brief look at what you’ll find in the code directory and where:

• The book’s completed examples are each in their own subdirectory under

demos/. You’ll see references to those files throughout the book.

• There is a www/ directory for you to work in as you make your journey

through the book. If you get stuck, you can always compare your work

against the files in the demos/ directory. Don’t forget to mutter and curse

about me under your breath, which you’ll find therapeutic.

As you work through the book, you’ll often find yourself in those two directo-

ries. But the accompanying code includes some additional files and directories

that you might be curious about:

• The deploy/ directory contains a standalone WebRTC app that you’ll use

in Chapter 8, Deploying WebRTC Apps to Production, on page 197.

• The server.js file contains a basic web server using the ExpressJS frame-

work. This file includes the basic signaling channels that are discussed

later in the book.

• The scripts/ directory contains a server startup script, start-server, which

(surprise!) starts the server, but you can simply run npm start on your

command line to fire up the server.

report erratum • discuss

Downloading the Supporting Code and Installing Dependencies • 3

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

• For further study and your future experiments, you will find starter scripts

for establishing peer connections in the _starter/ directory. p2p.js contains

the logic necessary to establish a connection between two peers, and

multi.js is enhanced with logic to establish a connection among three or

more peers.

Serving HTTPS in Development

In order to develop WebRTC applications, it’s necessary to configure your

development environment to serve HTTPS. Browsers disallow access to a

number of APIs, including those that grant access to your microphone and

camera, unless you’re serving HTTPS—even in development.

To serve HTTPS in development, you’ll need to create and use your own self-

signed certificates. It doesn’t take too much work to generate self-signed cer-

tificates, but you can still impress your friends that you managed to serve

HTTPS over localhost.

Although self-signed certificates are not suited for use on the open web, they

are perfectly acceptable for testing within the familiar comfort of your local

network. The browsers you test your work on will nevertheless protest

mightily, and they’ll do their best to scare you away from using self-signed

certificates. And when that doesn’t work, they’ll try to make you feel bad about

yourself. But don’t worry, and don’t feel bad: we’ll diffuse their unwarranted

scare-and-shame tactics at the end of this chapter.

Generating Self-Signed Certificates

You’ll need access to openssl to generate your own certificate and key files on

your operating system. MacOS and virtually all Unix-like operating systems

and Linux distributions ship with openssl. If you’re a Windows user, you might

need to install openssl yourself. The OpenSSL wiki maintains a list of download-

able binaries.7 If you run Git Bash on Windows,8 it already includes openssl.exe,
which you can also use.

Before you generate the certificate files, you’ll need to create an easy-to-

remember place for them to live. I recommend creating a Certs directory in

your home directory:

$ mkdir ~/Certs

7. https://wiki.openssl.org/index.php/Binaries
8. https://gitforwindows.org/

Chapter 1. Preparing a WebRTC Development Environment • 4

report erratum • discuss

https://wiki.openssl.org/index.php/Binaries
https://gitforwindows.org/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The book’s supporting code you downloaded includes a script you can run

to generate your certificate files. You’ll need to change into the directory where

you’re storing the book’s code in order to do this. The base command is npm
run ssl-keys, and it needs two arguments: the path to the directory you created

(keydir) and the number of days before your self-signed certificates expire

(numdays).

For example, to create self-signed certificate files in ~/Certs that won’t expire

for about five years (1825 days), you’d run this command in the book’s code

directory:

$ npm run ssl-keys --keydir="$HOME/Certs" --numdays=1825

Whatever values you choose, use the $HOME variable instead of the tilde, ~,

and ensure there are no spaces around your equals signs.

If you’re the suspicious type, you can examine the ssl-keys script in the pack-
age.json file before you run it. It’s based on a command suggested by Let’s

Encrypt,9 which is ordinarily in the business of offering free certificates that

can be used on world-facing websites. If you’d prefer, you can head over to

Let’s Encrypt’s original post10 and copy from there into your command line

instead of using the npm script. You’ll need to change into your certificates

directory before running the Let’s Encrypt command to generate the certificate

and key files. By default, openssl creates certificates that expire in one year. If

you want to go longer than that without having to generate new ones, add

-days followed by some number of days to the Let’s Encrypt script, like -days
1825 to create five-year certificates.

However you generate your keys, once you hit Return, it will only take a

moment to generate the key and certificate files in the directory you’ve chosen,

like ~/Certs. Creating those files is an important first step to serving HTTPS.

But you’ll also need to make sure that any scripts and servers you run can

find your certificate files with as little fuss as possible. Let’s set that up next.

Storing the Certificate File Locations in Environment Variables

You’ll need to export two environment variables from your command line’s

startup scripts. Those variables will point to the location of your self-signed

certificate files. Your startup scripts will be in a file in your home directory

called .bashrc or .bash_profile, if you’re a bash user, .zshrc if you’re a zsh user, or

possibly even a file called .profile.

9. https://letsencrypt.org/
10. https://letsencrypt.org/docs/certificates-for-localhost/

report erratum • discuss

Serving HTTPS in Development • 5

https://letsencrypt.org/
https://letsencrypt.org/docs/certificates-for-localhost/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Whichever startup file your command line uses, open it in your favorite text

editor, and add the following lines:

SSL Keys
export LOCALHOST_SSL_CERT="$HOME/Certs/localhost.crt"
export LOCALHOST_SSL_KEY="$HOME/Certs/localhost.key"

Be sure not to put any spaces around the equals signs, =. And don’t forget

to adjust the path if you’ve saved your keys somewhere different from ~/Certs
or named them something other than localhost.crt and localhost.key. Once you’ve

saved your startup file, reload it in your terminal using the source command.

You’ll need to reference the name of the file your command line uses. In this

example, the file is called .zshrc:

$ source ~/.zshrc

As a quick sanity check, you can confirm that your command line knows

about these variables by using echo to output their values. To do this, prefix

the variable names with a dollar sign:

$ echo $LOCALHOST_SSL_CERT

If everything has gone according to plan, you’ll see the certificate location you

specified output by your command-line shell for LOCALHOST_SSL_CERT. On MacOS,

for example, that will look something like /Users/username/Certs/localhost.crt. You

can check the LOCALHOST_SSL_KEY value the same way, if you’d like.

Choosing a Development Browser

You’ll have the best possible development experience running the latest version

of either Chrome or Firefox. I personally prefer Firefox Developer Edition,11

but the choice is yours.

Whichever browser you choose, you’ll need to open its developer console and

disable caching, so you always load the latest version of your CSS and Java-

Script as you work. Firefox and Chrome both have the Disable Cache option

under the Network tab of the developer pane. If you’re like me, you’ll opt to

pop the developer console into its own window to maximize your available

screen space. You’ll be building responsive interfaces that take advantage of

the entire viewport. And you know the kinds of divas interfaces can be: steal

their spotlight in any way and they’ll make your life miserable and spread

salacious rumors about you to their friends.

11. https://www.mozilla.org/en-US/firefox/developer/

Chapter 1. Preparing a WebRTC Development Environment • 6

report erratum • discuss

https://www.mozilla.org/en-US/firefox/developer/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

What About Safari?

Safari has historically lagged in its WebRTC implementation, but as of April 2022’s

release of Safari 15.4, it is also up to snuff. If you opt to use Safari as your develop-

ment browser, or if you want to test out your work on an iPhone or iPad, please be

sure you’re running at least Safari 15.4.

Incomplete WebRTC implementations in older versions of Safari and other browsers

(Firefox prior to version 80, and Chrome prior to version 75) will give you a series of

raging headaches. Consult Appendix 1, Connection Negotiation in Legacy Browsers,

on page 225 to learn about the fallbacks you’ll need to add to your code for the sake

of older browsers, for as long as they remain in use (if history is a guide, that will be

awhile).

Starting and Stopping the Server

I’ve tried to make it as painless as possible for you to serve both your own

work and the completed demos over localhost. To serve your own files as you

work on them, run npm run start or simply npm start on the command line. Your

files are more important, so they get the more convenient commands.

Remember to Install Dependencies

If you haven’t yet run npm install, be sure to do so before starting

the server, or if you encounter errors about missing modules.

To serve the book’s completed examples, you’ll need to run the slightly more

verbose command npm run start:demos. No space on either side of the colon.

Whenever you start the server, you’ll see output like this in your terminal

window:

signaling-server: ** Serving from the www/ directory. **
signaling-server:
signaling-server: App available in your browser at:
signaling-server:
signaling-server: -> https://127.0.0.1:3000/
signaling-server: -> https://192.168.1.6:3000/
signaling-server:
signaling-server: Hold CTRL + C to stop the server.
signaling-server:
signaling-server: +0ms

report erratum • discuss

Starting and Stopping the Server • 7

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Each time you start the server, it will tell you which directory you’re currently

serving from (again: www/ with your work, demos/ with the completed examples)

and at least two addresses for reaching the server from your development

browser of choice. Whenever you need to stop the server, hold down CTRL + C.

The first time you start the server, your operating system might notify you

about a firewall restriction of some kind. Because you’ll eventually be hitting

this server from other devices connected to your local network, instruct your

OS to allow incoming connections.

With the server still running, you can open your browser to https://localhost:3000/.
Of course localhost is a shortcut for 127.0.0.1, which you can also use if you get a

thrill out of typing numbers and dots: https://127.0.0.1:3000/. Don’t worry for now

about the second IP address you see. It will almost certainly be different from

192.168.1.6, but eventually you will be able to use whatever that second address

is to test your app using other devices connected to your local network.

One big gotcha: you absolutely must type out the full https:// protocol portion

of these URLs. If you leave the protocol off, your browser will try to establish

a connection over http://. The server isn’t actually listening for HTTP, but HTTPS.

Your browser doesn’t know that, though, so it’ll dismissively inform you that

it’s unable to connect. And you’ll lose a whole part of the day tracking down

that missing s, which is made even more difficult to spot in browsers that

hide the http:// protocol string on HTTP URLs.

Once you enter the exact HTTPS-serving address, you’ll immediately hit a

snag. Your browser, which demanded that you type out https:// in the address

bar, now wants you to know that it has a big problem with your self-signed

certificates. Instead of seeing the page the server is serving, you’ll get a

security warning.

Getting Past Browser Security Warnings

After you point your browser to any of the server’s local https:// URLs, the

browser viewport will fill with dire warnings, bad omens, and tales of an

ancient curse. Firefox Developer Edition, for example, will present the screen

on page 9.

On the open web, these security warnings are a good thing. But in develop-

ment, they’re just overly dramatic, pearl-clutching pains in the neck.

The good news is that you’ll likely see this warning only the first time you hit

your local address, and you will have to take these steps only once, too. To

Chapter 1. Preparing a WebRTC Development Environment • 8

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

get Firefox to chillax and let you get on with your work, click the Advanced…

button, and then the Accept the Risk and Continue button in the box that

appears. On Chrome, you’ll likewise click Advanced and then the “Proceed to

localhost (unsafe)” link.

Safari makes you jump through a different series of hoops to accept self-

signed certificates: when confronted by Safari’s warning screen, click on Show

Details, then the “visit this website” hyperlink. That’s all you have to do on

iOS, thankfully. But on MacOS, you’ll then be greeted by a popup asking,

“Are you sure you want to visit this website on a connection that is not pri-

vate?” Click “Visit Website” and then you’ll see another popup: “You are

making changes to your Certificate Trust Settings.” Click Use Password…

and then enter the password you use to log into your Mac.

report erratum • discuss

Starting and Stopping the Server • 9

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Once you’ve gone through those steps, you’ll see an overview page I’ve written

for you. On the demos side, the page includes links to each of the demos. On

the working side, from www/, you’ll see some instructions and encouragement.

Next Steps

Excellent. Having viewed one or both of those pages over HTTPS in your

development browser of choice, you can be confident that you’ve successfully

prepared your WebRTC development environment. You’ve installed Node.js,

and you’ve located, downloaded, and used the command line to find this

book’s accompanying source code and install its dependencies. You’ve also

generated your own self-signed certificate files for serving HTTPS in develop-

ment. And finally, you’ve convinced your browser, after some haggling over

security, to accept your self-signed certificate.

In the next chapter, we’re going to get right to work with the server you

installed and fired up in this chapter. You’ll be working with its signaling-

channel component—which we haven’t seen yet—while also constructing a

user interface for your first WebRTC app. As we’ll see, WebRTC meshes

tightly with user interfaces. So we will want to make sure the code we write

for the interface is as well crafted and expertly engineered as everything we’ll

be writing alongside WebRTC’s browser APIs. Let’s get going!

Chapter 1. Preparing a WebRTC Development Environment • 10

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 2

Working with a Signaling Channel

In this chapter, you’re going to build the foundations of a video-calling app

that will use WebRTC for connecting two peers who can stream video—and

eventually also audio—to each other, in real time.

You’ll start by building an interface using semantic HTML and CSS, including

a little flexbox for layout. Some of that work will strike you as being very

precise and detailed. But the goal is to build a lean, accessible interface that

also displays responsively across all types of devices. With the interface built,

you’ll then do the necessary work to wire it up with JavaScript for handling

routine events, like clicks, that happen in the browser. Those will eventually

hook into the signaling channel and other WebRTC logic. So it’s necessary to

build the interface first.

With the interface built, we’ll take a look at the peer-to-peer architecture of

WebRTC and how it differs from the more familiar client-server web architec-

ture of HTTP and HTTPS.

From there, we’ll take a sightseeing tour of a crucial piece of technology for

establishing peer connections over WebRTC: a signaling channel, which will

take the form of a small server that you’ve already downloaded with the book’s

companion code. With a better understanding of the signaling channel in

hand, you’ll then write some skeletal, foundational code for simultaneously

connecting multiple pairs of peers over your app.

Preparing a Basic Peer-to-Peer Interface

Let’s begin with a basic process for building something new for the web:

establishing a workable UI concept, structuring it in semantic HTML, and

styling the HTML with just enough CSS to make it responsive across the full

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

range of web-enabled devices. That will pave the way for much more graceful

and efficient work with JavaScript for stitching the app together.

The UI work here is going to be pretty precise, probably way more than what

you’ve come to expect from books on specialized topics in web development.

The advantage to engaging at least some front-end design in your development

work is that when you’re selling some new API or idea to someone—a team

lead, a manager, a client—you have something to show that actually looks

good and helps to sell the idea a little more effectively than prefacing your

work with “Imagine this doesn’t look like garbage.”

But it’s also never too early to consider the obligations we as developers have

to end users: front-end development involves precise work on interfaces that

real users will have to interact with. Precise UI design is also the cornerstone

of accessibility, which is as essential for real-time communication technologies

as it is for anything else developed for the web. For that reason, it’s nothing

less than a professional obligation to keep users in mind when building

something explicitly for them—no matter how deep down the rabbit hole the

underlying API takes us. With WebRTC, that rabbit hole is deep.

And because the underlying WebRTC API is deep and complex, you’ll also see

that we’re going to spend more than a little bit of time working through some

core fundamentals of JavaScript, including code organization and the

behavior of callback functions. The purpose of that work is twofold: first, as

JavaScript continues to advance as a language, it can be harder to keep all

developers on the same page with its newer features, especially as they relate

to JavaScript’s mainstay features. And second, because of the design of the

WebRTC API, I think you’ll find that you work more effectively within WebRTC’s

dizzying number of event-driven methods and callback functions if the con-

nections between them and vanilla JavaScript are made more explicit. That

will be especially true if your routine, day-to-day interactions with JavaScript

are mediated through a JavaScript framework with a higher-level API than

plain old vanilla JavaScript has to offer.

Designing Peer-to-Peer UI Patterns

Before you start to write a line of code for your video-call app, think for a

moment about the kinds of interfaces that are common in peer-to-peer apps

you’ve used. Their interfaces are generally modeled on one of two patterns—

a caller pattern or a joiner pattern. A caller pattern is asymmetric: certain

peer-to-peer apps, like FaceTime or Skype, and even the telephone, depend

on one peer calling and the other answering. The FaceTime interface, for

example, looks the same for two peers inside and outside of a call. But while

Chapter 2. Working with a Signaling Channel • 12

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

a call is being placed, the interface is different for both the caller and

answerer. The interfaces return to a symmetric state once the person being

called decides either to answer, causing both interfaces to show the call, or

to decline (or simply ignore), in which case both interfaces return to their

states before the call was placed.

Other peer-to-peer apps, like Google Meet or Zoom, use a symmetric joiner

pattern: instead of setting up a call between a caller and an answerer, sym-

metrically patterned apps treat a call as something that already exists for

users to join whenever they’re ready. The interface’s state depends only on

what any one user is doing: preparing to join a call, participating in a call

after joining, or leaving the call.

WebRTC-backed interfaces can be constructed using either pattern, caller or

joiner. But the joiner pattern simplifies the interface, because there’s no need

to create a screen to handle an incoming call, or wire up a bunch of buttons

to answer or decline. Instead, one button is all that’s needed—Join Call—and

it’s presented to each peer. In the joiner pattern, we don’t even have to think

in terms of someone calling someone else. From the perspective of the peers

on the call, no one cares who joined first. As the designers of the app, we

don’t have to care, either.

Adding a Header and Button

With a joiner pattern in mind, you can start building the HTML and CSS to

structure and style the app. No need to worry about special HTML, CSS, or

JavaScript for a caller or an answerer: everyone on the call is a joiner, so

everyone gets the same code.

Open the www/basic-p2p/ directory and find its index.html file, which already links

to the CSS and JavaScript files you’ll use. Start off by writing a basic header

that has a first-level heading along with a button element for joining the call.

You can write this inside the <main> element you’ll find in the HTML file. The

button will enable users to both join and leave the call, but you should set it

up initially as a join button. When the app first loads, users will need to join

the call:

demos/basic-p2p/index.html

<main id="interface">
<header id="header" role="banner">
<h1>Welcome</h1>
<button class="join" type="button" id="call-button">Join Call</button>

</header>
</main>

report erratum • discuss

Preparing a Basic Peer-to-Peer Interface • 13

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The type="button" attribute might look redundant, but it’s good practice to

include it for any button element without a browser-provided behavior: <button>
defaults to type="submit" for submitting form data, in the absence of an explicit

type attribute. But this button is not submitting a form.

The unique ID call-button is deliberately generic. It will save a lot of work we

would otherwise have to do in JavaScript to swap separate join and leave

buttons. The class join will work as a nice styling hook in CSS and, later, for

JavaScript to determine the state of the button. The button’s Join Call text

should be an unambiguous cue to users. In a bit, a little JavaScript will

change the button’s class to leave and its text to Leave Call once the Join Call

button has been clicked.

Adding Video Elements: Self and Peer

With a basic heading and button in place, the only other HTML this basic

app needs is for handling video: one element for a user’s own video stream,

which we will refer to as self, and one element for the remote user’s video

stream, which we’ll refer to as peer.

One of the many fun aspects of working with peer-to-peer streaming media

is that you get to write some things in your markup that are usually big no-

nos. One such thing is setting up multiple video elements to play simultane-

ously (one for self, one for the peer), with some attributes that might surprise

you if you’re familiar with the <video> element introduced in HTML5. If you’re

not familiar, that’s okay, too. We’ll walk through them.

Setting up the Self Video

This is how to set up the video element for the self video, which for convenience

takes an ID of self:

demos/basic-p2p/index.html

<video id="self"
autoplay
muted
playsinline
poster="img/placeholder.png">

</video>

That <video> element sets a number of important attributes. Let’s briefly

explore each one’s purpose in the context of live-streaming video.

Chapter 2. Working with a Signaling Channel • 14

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The autoplay Attribute

Ordinarily the autoplay attribute is frowned upon. Users generally expect control

over the playback of video and especially the accompanying audio. Browser

makers have helped to enforce user control by disregarding the autoplay
attribute until a user has interacted with a page in some way first. But for

streaming video, autoplay is strictly necessary: without it, the browser will only

show the very first frame of a streaming video. And because users will have

to click the Join Call button you built above, they will have interacted with

the page before any media begins to stream—all but guaranteeing that the

browser will respect the autoplay attribute.

The muted Attribute

In the next chapter on page 37, for same-machine testing purposes, we’ll

exclude audio from the streaming tracks entirely. But to ensure that future

audio-enabled streams don’t cause hellacious feedback, the self video takes

the muted attribute. That’s different from muting your mic so no one else can

hear you—a topic we will get to in a later chapter. All this attribute does is

disable audio on the self video.

The playsinline Attribute

The final Boolean attribute to include is playsinline. This attribute instructs

mobile devices in particular not to launch a full-screen presentation of the

video once the stream starts, which is the default behavior in Safari on iOS

and other mobile browsers. While full-screen video might sound desirable, it

will obscure anything else on the page, including any user-interface compo-

nents and the self video. With playsinline set, the peer video will play wherever

on the page you place it with CSS.

The poster Attribute

And although not strictly necessary, a placeholder image can be referenced

from the poster attribute. The image will display until the video stream starts,

which is a graceful way to prepare users to expect to see video streams on

the page. It’s helpful for testing purposes too: without a poster or some

explicit dimensions and colors set in CSS, video streams would appear out

of apparent nothingness—or not appear at all—if there’s something wrong

with media permissions or the peer connection that you’ll set up in Setting

Up the Peer Connection, on page 42.

report erratum • discuss

Adding Video Elements: Self and Peer • 15

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Setting up the Peer Video

The markup for the peer video is almost identical to the self video, except that

it takes an ID of peer and omits the muted attribute:

demos/basic-p2p/index.html

<video id="peer"
autoplay
playsinline
poster="img/placeholder.png">

</video>

You might have noticed that there is neither an src attribute nor any inner

<source> elements for either video. Their omission is intentional. There’s no

file involved in streaming video. In the next chapter, you’ll use JavaScript to

set up the streaming source for each video element, using the srcObject property,

in the displayStream() function on page 41.

Finally, let’s wrap both <video> elements in an <article> element with an id of

videos. It should open with a second-level heading to label the streaming videos

for accessibility purposes. We’ll give the heading a class of preserve-access that

we can refer to from the CSS in a moment. Putting it all together, your HTML

file should look something like this:

demos/basic-p2p/index.html

<main id="interface">
<header id="header" role="banner">
<h1>Welcome</h1>
<button class="join" type="button" id="call-button">Join Call</button>

</header>
<article id="videos">➤

<h2 class="preserve-access">Streaming Videos</h2>➤

<video id="self"
autoplay
muted
playsinline
poster="img/placeholder.png">

</video>
<video id="peer"
autoplay
playsinline
poster="img/placeholder.png">

</video>
</article>➤

</main>

That’s it: a heading, a button, and two video elements—all wrapped up in a neat

package of semantic sectioning elements. Let’s style everything up in CSS.

Chapter 2. Working with a Signaling Channel • 16

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/index.html
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Styling the Core App Elements

With the HTML in place, you can turn your attention to writing some CSS to

present a workable interface. I always begin my work with Eric Meyer’s Reset

CSS.1 There’s no need to replicate that here, but you will see a minified version

of it in the starter screen.css file for this app.

It’s useful to begin by defining an app’s basic typographic properties, usually

on the html selector:

demos/basic-p2p/css/screen.css

html {
font-family: "Lucida Grande", Arial, sans-serif;
font-size: 18px;
font-weight: bold;
line-height: 22px;

}

That text setting might strike you as a bit large and bulky, especially because

these are also meant to be mobile-first styles. But that’s deliberate: think

about your face’s position relative to your screen when you’re on a video call.

Most of us move back from the screen so that the camera can capture at least

our entire heads. And if your head is a prize-winning pumpkin like mine, you

might have to move back. With users’ eyes further from the screen, it’s a more

accessible choice to err on the side of an oversized, easily visible UI—especially

for controls.

Let’s also add some foundational layout styles that set box-sizing to the more

intuitive border-box value, and add some padding around the interface and

header elements:

demos/basic-p2p/css/screen.css

/* Layout */
* {

box-sizing: border-box;
}
#interface {
padding: 22px;

}
#header {

margin-bottom: 11px;
}
#header > h1 {

margin-bottom: 11px;
}

1. https://meyerweb.com/eric/tools/css/reset/

report erratum • discuss

Styling the Core App Elements • 17

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
https://meyerweb.com/eric/tools/css/reset/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Because the “Streaming Videos” heading is meant to help low-vision users

navigate the page’s structures, let’s use an accessible technique to hide the

heading from sighted users while keeping it available in the accessibility tree.

We will reuse this class on additional elements in later chapters:

demos/basic-p2p/css/screen.css

.preserve-access {
position: absolute;
left: -20000px;

}

Styling the Button Element

The <button> element, the only interactive UI on the page, is generally easier

to style than other form elements. You can set up a basic look for it on the

button element selector, opening with a bunch of font styles to inherit the look

of all text on the page, as well as setting the cursor to display as a pointer:

demos/basic-p2p/css/screen.css

button {
font-family: inherit;
font-size: inherit;
font-weight: inherit;
line-height: inherit;
cursor: pointer;
/* Box Styles */
display: block;
border: 0;
border-radius: 3px;
padding: 11px;

}

For better control over the button’s place in the layout, it’s worth setting it

to display as a block. You can also remove the default border that browsers

draw, given the button rounded corners with a small border-radius. A little

bit of margin and padding—derived from the page’s 22px line-height value—

provide some room around the text and some margins to offset the element.

Nothing fancy. (And don’t worry—if your familiarity with responsive design

has you feeling a gnawing guilt for using pixel units, you’re welcome to make

those adjustments yourself. Or give yourself permission to work with pixel

units while you’re still learning WebRTC.)

The button’s HTML currently has only the join class, but you can still set up

some very basic colors on both the join and leave classes for the button:

Chapter 2. Working with a Signaling Channel • 18

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/basic-p2p/css/screen.css

.join {
background-color: green;
color: white;

}
.leave {

background-color: #CA0;
color: black;

}

Finally, let’s set a width on the #call-button selector:

demos/basic-p2p/css/screen.css

#call-button {
width: 143px; /* 6.5 typographic grid lines */
margin-right: 11px;

}

The 143px width value is tailored to comfortably fit the text for Join Call and

Leave Call, while also being derived from the page’s 22px line height. All the

width does is ensure the button won’t shift the layout around when the but-

ton’s text changes from Join Call to Leave Call. That doesn’t matter much

when the button is on its own line, but as a small responsive touch, let’s add

a media query to display the contents of the <header id="header"> as flex items,

all on the same line:

demos/basic-p2p/css/screen.css

@media screen and (min-width: 500px) {
#header {
display: flex;
flex-direction: row-reverse;
align-items: baseline;
justify-content: flex-end;

}
#header > * {
flex: 0 0 auto;

}
#header > h1 {
margin-bottom: 0;

}
}

If you’re not familiar with flexbox and its properties, what’s happening here

is the page header is set to display as a flexbox with display: flex. Aligning the

flex items—the first-level heading and the button—to the baseline keeps

the text of each on the same invisible line.

report erratum • discuss

Styling the Core App Elements • 19

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Then, to move the join button so it sits to the left of the heading, flex-direction:
row-reverse flips the order of the header’s items, while justify-content: flex-end, on a

row-reversed flexbox, will keep the flex items aligned to the left of the flexbox.

The child selector #header > * sets the behavior of the flex items (an <h1> and

<button>, in this case). The shorthand flex sets the grow and shrink values to

zero, meaning that neither element will grow or shrink from its auto width.

For the first-level heading, that will be the width of its text. For the button,

that will be the 143px value of the width property set on the #call-button selector.

The result is that on viewports 500 pixels and wider, the button and heading

sit on the same line as in the figure on page 20. That will reduce how far down

the viewport the header pushes the video elements. And speaking of the video

elements, let’s style them next.

Styling the Video Elements

As embedded content, the <video> element displays inline by default, just like

the tag does. Ethan Marcotte made famous the pairing of display: block
and max-width: 100% for responsive images,2 and we can do the same for videos.

Setting the max-width property ensures the video element will be no wider than

either its parent element’s width or, in the case of this small app, the viewport:

demos/basic-p2p/css/screen.css

/* Video Elements */

video {
background-color: #DDD;
display: block;
max-width: 100%;

}

2. https://alistapart.com/article/fluid-images/

Chapter 2. Working with a Signaling Channel • 20

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
https://alistapart.com/article/fluid-images/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

You can set the background color on video elements to a very light shade of

gray, which will show the exact boundaries of the video elements and work

nicely with the transparent smiley face PNG set on the video element’s poster
attribute.

The peer video can display as is, but a few adjustments to the self video will

make it obvious which video is which. That’s helpful if you have just a single

camera on your computer. The same streaming video image will appear in

both video elements when you’re testing out your app:

demos/basic-p2p/css/screen.css

#self {
width: 50%;
max-width: 320px;
margin-bottom: 11px;

}

That reduces the self video’s width to 50 percent, and puts a half line-height of

space between it and the peer video that sits below.

With all of that CSS in place, you can reload the page in your browser to see

the button, heading, and video placeholders:

report erratum • discuss

Styling the Core App Elements • 21

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Adding Functionality to the Call Button in JavaScript

That’s all the structure and styling your app needs. Now it’s time to cozy up

to JavaScript. We’ll start by focusing on the call button’s functionality.

The first thing we’ll do in the main.js JavaScript file is invoke strict mode. That’s

as simple as writing strict mode as a string at the top of the file:

demos/basic-p2p/js/main.js

'use strict';

Invoking strict mode is good practice. Strict mode will often reveal errors and

inconsistencies in your JavaScript that the browser would otherwise suppress

or ignore. A strict browser turns out to be a real asset when you’re trying to

debug and track down errors in your JavaScript. If you’re interested, you can

read more about strict mode at MDN.3

Now onto the call button, which we’ll handle as a one-off line of JavaScript

in the “User Interface Setup” portion of the JavaScript file. You can use the

querySelector() method on the document object to select the call button from

the HTML. If you’ve not used querySelector() before, know that it accepts a string

containing the same selector syntax that you’d write in CSS:4

document.querySelector('#call-button');

With the #call-button element selected, you can then call the addEventListener()
method to respond to click events on the button. Start small and report in

the console that the button has been clicked:

document.querySelector('#call-button')
.addEventListener('click', function(event) {

console.log('Call button clicked!');
});

Reload your page in the browser and open the JavaScript console. You should

see “Call button clicked!” appear in the console.

Writing Named Functions as Callbacks

While the querySelector method takes a single argument—the CSS selector #call-
button—the addEventListener method takes two required arguments. The first

argument is the name of the event, 'click', and the second argument is an

anonymous callback function, also known as a listener. The function is

3. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
4. https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector

Chapter 2. Working with a Signaling Channel • 22

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Strict_mode
https://developer.mozilla.org/en-US/docs/Web/API/Document/querySelector
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

anonymous because it doesn’t have a name: the function keyword just defines

the function in place. I like callback functions to have names and their own

place to live in a JavaScript file. In this case, there is a “User-Interface

Functions and Callbacks” area in the main.js file. So the first little improvement

is to create a named function and pass its name in as the second argument

to addEventListener():

/**
* User-Interface Setup
*/

document.querySelector('#call-button')
.addEventListener('click', handleCallButton);

/**
* User-Interface Functions and Callbacks
*/
function handleCallButton(event) {

console.log('Call button clicked! Named callback function active!');
}

With the handleCallButton function passed in as a reference, the code looks a

little cleaner: we can simply glance at the event, click, and the descriptive name

of the function to be called in response to the event. Even better, the nitty-

gritty details of handleCallButton are in their own spot a little further down in the

JavaScript file. Maintaining those kinds of organizational habits will be even

more important once the file includes more signaling and WebRTC code,

which is almost entirely driven by events and their callbacks.

Reload your app in the browser and click the button once again. The console

should show the longer message announcing that the named callback function

is active.

If you saw the message in the console before you clicked, it’s possible that

you might have called the function by mistake, rather than passing it in by

reference:

document.querySelector('#call-button')
.addEventListener('click', handleCallButton()); // Oops!

If you included the opening and closing parentheses, (), on handleCallButton,
what gets passed into addEventListener is not the reference to the callback

function, but the result of the callback function after it runs prematurely. If

that happened, make sure that you’re passing in the name of the function

only: handleCallButton, without parentheses. Then refresh the app in your

browser and try again.

report erratum • discuss

Adding Functionality to the Call Button in JavaScript • 23

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Working with Data Returned to Callback Functions

The addEventListener() method, like many methods that accept callback functions,

passes along a chunk of data to the callback when its event fires. With

addEventListener(), it’s basically convention to pass that data into the callback

as either event or simply e. Choose whichever you prefer, but note that the

code you’ll see throughout this book uses e for errors and spells out event for

all events. The target property on event is a DOM object representing the element

that was clicked. Because it’s a DOM object, much like we’d get from using

document.querySelector(), we can do DOM things with it, like determine its id:

function handleCallButton(event) {
console.log('Button with ID', event.target.id, 'clicked!');

}

Refresh and click the button again, and watch for “Button with ID call-button

clicked!” to appear in your console.

We can do even more with event.target to make the call button fully functional:

1. Change the button’s class from join to leave, and vice versa

2. Change the button’s text from “Join Call” to “Leave Call,” and vice versa

Let’s set that up. To make the code more readable, hang onto the event.target
value in a local variable called call_button:

demos/basic-p2p/js/main.js

function handleCallButton(event) {
const call_button = event.target;
if (call_button.className === 'join') {
console.log('Joining the call...');
call_button.className = 'leave';
call_button.innerText = 'Leave Call';

} else {
console.log('Leaving the call...');
call_button.className = 'join';
call_button.innerText = 'Join Call';

}
}

Refresh your app once more. Now you can click the button again and again.

Its text will change and, thanks to CSS that you wrote earlier, so will its

appearance. The console will also log “Joining the call…” or “Leaving the

call…,” depending on what state the button is in.

Excellent. All of the foundational HTML, CSS, and JavaScript for the video-

call app’s interface is now in place. Up next, we need to start adding in logic

for the signaling channel. But before we get to that, let’s take a code break

Chapter 2. Working with a Signaling Channel • 24

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

and look a little bit at WebRTC as implemented in the browser—and learn

why a signaling channel is necessary for WebRTC.

Positioning WebRTC as a Front-End Technology

With an imposing name like WebRTC: Real-Time Communication in Browsers,

the WebRTC specification sure sounds like a newfangled server-based tech-

nology.5 As web developers, especially front-end developers, we’ve simply

never seen browsers do much else than talk to a server, whether to make

requests for static HTML pages, process data submitted from a form, or

asynchronously request resources with the Fetch API. The traditional web

has always been a 100 percent server-backed technology. Front-end developers

are left to mush their faces against the windowpane to the server room, where

all the cool new toys often are.

They’re not wrong to feel that way: the web has always relied on the client-

server architecture of HTTP, where the client part is usually synonymous with

browser. (Web-standards documents refer to user agents—which are clients

or browsers, too.) Client-server architecture means that even something as

basic as a text-based chat application requires relaying each chat message

from a browser, through a server, and over to the receiving browser. WebSockets

have enabled persistent connections and push-like behavior, so chat messages

appear to come across instantaneously from one user to another. But even

with WebSockets, the basic architecture of the web remains unchanged,

including the server as the central hub.

Not so with WebRTC. As a genuine peer-to-peer technology, the architecture

of WebRTC as implemented in web browsers just about eliminates the need

for an intermediary server. (True, there are server, OS, and even smart-device

implementations of WebRTC, but they represent different use cases beyond

the scope of this book.) Once a connection is established, WebRTC in the

browser enables any two peers to directly exchange data, including streaming

media, over an encrypted low-latency connection without their data ever

touching a web server.

Previewing Peer-to-Peer Connection Negotiation

Of course, there’s one little hitch: WebRTC is peer-to-peer only once a connec-

tion is established. RTC peer connections take a little bit of work to establish,

as you’ll see, and usually with the aid of a server that provides a signaling

channel.

5. https://www.w3.org/TR/webrtc/

report erratum • discuss

Positioning WebRTC as a Front-End Technology • 25

https://www.w3.org/TR/webrtc/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

As web developers, we’re used to HTTP’s request-response connection pattern:

if you have a domain name or even just an IP address, you enter it in the

address bar of the browser and boom—connection established and resource

or error message delivered in response to the request. End of story. You’ve

been doing that already with the little local web server for previewing your

work on the video-call app’s interface. Subsequent requests to the same

website work the same way as the first request, but typically without a per-

sistent connection between browser and server unless you’re dealing with

something fancy like WebSockets or a web server with keepalive functionality.

Establishing a connection over WebRTC is more involved than request-

response. The two connecting peers have to negotiate the terms of the connec-

tion before it can be established. Instead of request-response, peer connections

are negotiated by an offer-answer pattern over a signaling channel.

The offer-answer structure that establishes a peer connection is metaphori-

cally no different from a conversation between two friends making plans to

meet for coffee. Unless they share a remarkably strong psychic connection,

the two friends won’t show up the same day and time at the exact same coffee

shop. They must first negotiate the details of the coffee date, using some kind

of a signaling channel: email, phone, text, or something conventional like

that. Even a remarkably strong psychic connection functions as a signaling

channel, when it comes right down to it.

But let’s stick with a more conventional example. One friend initiates the

coffee date by opening a signaling channel: sending a text, making a phone

call, or yelling up the street. The initiating friend provides proposed details

on a plan to meet up, and the other friend responds. The friends go back and

forth, offering and answering over their shared signaling channel, until they

reach an agreement to meet at a specific time and place. Regardless of the

signaling channel used (text, phone, email), their conversation goes something

like this:

Friend A: How about we meet for coffee next Tuesday at 10, at The Red Eye?

Friend B: I could do Tuesday, but not until 11.

Friend A: That works, but I have another meeting at 12:30 on the other side of

town, so let’s meet at Common Grounds instead.

Friend B: Okay! See you on Tuesday at 11 at Common Grounds.

Friend A: Sounds good!

Again: all of that negotiation takes place over a signaling channel, which is

independent of the destination coffee shop. The coffee shop itself cannot serve

Chapter 2. Working with a Signaling Channel • 26

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

as a signaling channel, because even the question of which coffee shop may

have to be negotiated—as was the case in the little exchange above.

Establishing a peer-to-peer connection between two browsers works much

the same way. At least one browser will make an offer to connect, and the

other browser will return some kind of response. The process continues like

that over the signaling channel, like friends setting a coffee date over text,

until the browsers agree on how to open the peer connection.

Using a Lightweight Signaling Channel

Browsers lack a signaling channel that enables a connection to be negotiated.

The editors of the WebRTC specification have gone so far as to avoid requiring

any specific signaling technology whatsoever: you have to bring your own. So

to prepare the way to establish a WebRTC connection, we need first to select

and set up a signaling channel.

A server-based signaling channel is the most convenient option. Even a very

basic peer-to-peer application, like the one you’re writing right now, requires

both browsers to visit a URL pointing at some server on the web to download

the HTML, CSS, and JavaScript necessary to establish and support the call.

With a web server already in the mix, any server-side setup for passing a

message from one browser to another would suffice.

Technically speaking, a server-based signaling channel isn’t strictly necessary.

Two peers connecting over WebRTC could, in theory, email or even handwrite

and make no-contact delivery of their browsers’ offers and answers to set up

the peer connection—just like the two friends above could have set their coffee

date using semaphore, tin cans on a string, a dead drop, or a whole bunch

of other improbable signaling channels. But a server is going to provide the

greatest flexibility and much lower latency. It would be possible, for example,

to write your own signaling channel using WebSockets, in any server-side

language you choose: PHP, Python, Ruby, and so on.

To prevent you from getting sidetracked by all of that work, I have written a

very small server in ExpressJS6 that includes a signaling channel based on

Socket.IO.7 It’s included in the book’s sample code you already downloaded.

The signaling channel works out of the box. While you might find value in

experimenting with it, you won’t be writing much server-side code in this

book. Our focus is in the browser, because that’s where the real action is.

6. https://expressjs.com/
7. https://socket.io/

report erratum • discuss

Using a Lightweight Signaling Channel • 27

https://expressjs.com/
https://socket.io/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

But before we get to work in the browser, you will better grasp the code you’re

about to write for using the signaling channel if we take a quick walking tour

of the signaling channel itself. The channel is very little and very dumb: all

it does is manage a few events and shuttle messages back and forth. It doesn’t

know about WebRTC or anything else that we might be doing. To the greatest

extent possible, it’s better to keep knowledge of WebRTC in and between

browsers. The less your signaling channel does, the easier it will be to move

your app to a different signaling channel in the future.

The server’s signaling channel component is fewer than a dozen lines, all of

which can be reproduced here. As you’ve seen, sometimes I walk through

setting up a piece of code, line by line. Other times, I will do a dramatic reveal

of the whole thing before talking through it with you. Like here:

server.js

const namespaces = io.of(/^\/[0-9]{7}$/);

namespaces.on('connect', function(socket) {

const namespace = socket.nsp;

socket.broadcast.emit('connected peer');

socket.on('signal', function(data) {
socket.broadcast.emit('signal', data);

});

socket.on('disconnect', function() {
namespace.emit('disconnected peer');

});

});

Two features of the signaling channel set the stage for the code we’ll write in

the browser: a set of events and a precise seven-digit namespace. Let’s look

at the events first.

Exploring the Signaling Channel’s Events

The signaling channel handles seven events: three that it listens for—connect,
signal, and disconnect—and four that it emits—connected peer, signal, and disconnected
peer, plus a connect event that Socket.IO emits automatically.

When a client connects, the signaling channel will broadcast the connected peer
event to other connected clients. When a client sends a signal, the signaling

channel will rebroadcast the signal event and its data, essentially acting as

a repeater. And finally, when a client disconnects, the signaling channel will

emit a disconnected peer event.

Chapter 2. Working with a Signaling Channel • 28

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/server.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That captures everything a basic signaling channel needs to do: listen for

connections, listen for and repeat signals, and listen for disconnections. That’s

it. The code we write in the browser to establish a peer connection will trigger

or respond to each of those events.

Namespacing the Signaling Channel

The video-call app you’re building is meant to scale: it will allow multiple

different independent pairs of peers to connect to each other simultaneously.

That is no different from how Zoom or Google Meet works. When you use

Zoom, you and the person you want to talk to must share (over some other

signaling channel!) a unique URL like https://fake-example.zoom.us/j/72072139453.
You’ll also be building unique URLs similar to that.

The opening lines of the signaling channel in server.js use a regular expression

to verify the structure of a namespace, which is similar to a meeting code

in Zoom. With a shared namespace, one pair of peers can negotiate their

connection over the namespace /0000001, while another pair can connect

simultaneously over /0000002. Their signals will never cross.

Those are very easy to guess patterns, of course, so we’ll write a function in

the browser to test or generate a random number that matches the name-

space’s expected seven-digit pattern on the server. We’ll make the namespace

easy for users to share by attaching it as a hash on the URL, something like

https://localhost/basic-p2p/#1234567. (Later in the book, we’ll use the server to gen-

erate namespaces using URL paths rather than hashes.)

At the very bottom of the main.js file, you will find a section for utility functions.

Here I’ve written a function called prepareNamespace() that takes two arguments.

The hash argument will work with an existing hash, likely as reported by the

browser from window.location.hash. The second argument, set_location, is a Boolean

value (true or false) for setting the prepared namespace on window.location.hash.
Look through the whole thing, and then let’s walk through it together.

demos/basic-p2p/js/main.js

/**
* Utility Functions
*/
function prepareNamespace(hash, set_location) {

let ns = hash.replace(/^#/, ''); // remove # from the hash
if (/^[0-9]{7}$/.test(ns)) {
console.log('Checked existing namespace', ns);
return ns;

}

report erratum • discuss

Using a Lightweight Signaling Channel • 29

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

ns = Math.random().toString().substring(2, 9);
console.log('Created new namespace', ns);
if (set_location) window.location.hash = ns;
return ns;

}

The local variable ns uses the replace() string method with a regular expression

and empty string to remove the # (octothorp) that window.location.hash always

returns. With the octothorp removed, the function can check the namespace’s

value against another regular expression pattern: /^[0-9]{7}$/. That is almost

identical to the signaling channel’s pattern you already saw in server.js (its
pattern must also check for the slash that Socket.IO prepends to namespaces).

Demystifying Regular Expressions

If you’ve never worked with regular expressions before, or if the phrase regular

expressions makes your palms sweat and your chest tighten, please try to

relax. Their basic purpose is pretty easy to summarize: regular expressions

describe patterns.

Let’s examine the regular-expression pattern /^[0-9]{7}$/ from the inside out.

A pattern that matches a sequence of seven digits, 0 through 9, looks like

this: [0-9]{7}. [0-9] represents all numbers in the range zero to nine. The seven

in curly braces, {7}, means that we want the numbers in the range to appear

seven times in a row. Easy enough, right? You’d think. The problem is that

any string of text that includes seven digits in a row—no matter what other

text the string includes—would still satisfy a regular expression pattern

specifying seven sequential digits.

To make sure the namespace is only ever exactly seven digits and therefore

prevent potentially malicious characters from ever reaching the signaling

channel, the pattern opens with a caret: ^. The caret is a regular-expression

symbol that marks the very beginning of a one-line string. Similarly, a dollar

sign $ marks the very end of the string. Without the dollar sign, the namespace

0011222-EVIL-BUSINESS-HERE! would still match, because it opens with seven digits.

That kind of thing is probably why most people find themselves so confused

and angered by regular expressions: they are incredibly, infuriatingly literal.

Hey, you said you wanted seven digits–I found you seven digits! Ask regular

expressions for a haircut, and they’ll cut exactly one of your hairs. They are

the dad jokes of computer programming.

Back to the pattern at hand: bookending the regular expression are slashes,

/, which demarcate regular expressions in JavaScript, just like quotation

marks or backticks demarcate strings. Put it all together, and this little creep

Chapter 2. Working with a Signaling Channel • 30

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

should look a tad less imposing: /^[0-9]{7}$/. Seven digits in a row, and seven

digits only. No more, no less—and nothing else. That’s the pattern for our

namespace.

Making Use of the Namespace

And now back to the prepareNamespace() function definition itself: With the reg-

ular expression in place, we call the test() method on it and pass along the

namespace we have on hand, ns. If the test passes, we return the octothorp-

free namespace, ns.

But if the test fails because either the hash doesn’t match our pattern or there’s

no hash at all, the function generates a new random hash in a complex one-liner:

demos/basic-p2p/js/main.js

ns = Math.random().toString().substring(2, 9);

That generates a random number and converts it to a string. The substring()
method gets called to remove the first two characters: numbers generated by

Math.random() always begin with 0. The second argument to substring(), 9, ensures

that we get a seven-digit number, thanks to the first two characters being

discarded by the first argument, 2.

If set_location is true, the new namespace gets set on the URL by assigning it to

window.location.hash.

Finally, the function returns the value of ns, which is the brand-new, randomly

generated hash.

With the prepareNamespace() function definition in place, you can put it to work

at the top of your file and assign its output–the returned namespace–to a

namespace variable:

demos/basic-p2p/js/main.js

const namespace = prepareNamespace(window.location.hash, true);

Let’s do something user-facing with the namespace variable. In the user-interface

area of the JavaScript file, add another one-liner that sets the h1 text to wel-

come users to a correctly namespaced room:

demos/basic-p2p/js/main.js

/**
* User-Interface Setup
*/

document.querySelector('#header h1')➤

.innerText = 'Welcome to Room #' + namespace;➤

document.querySelector('#call-button')
.addEventListener('click', handleCallButton);

report erratum • discuss

Using a Lightweight Signaling Channel • 31

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Reload the page at https://localhost:3000/basic-p2p/. You should see two things: a

random, seven-digit hash appended to the URL, something like https://local-
host:3000/basic-p2p/#4134610, and that same hash repeated in the text of the page’s

first-level heading, like this:

Those adjustments are basically cosmetic, changing only the appearance of

the URL and page. Now let’s use the namespace variable to connect to the sig-

naling channel.

Connecting to the Signaling Channel

There are a few preliminary steps you’ll need to take to connect to the signaling

channel. The first is to return to the index.html file and add another <script> tag

right above the one that loads the main.js file. Point it to the JavaScript file

/socket.io/socket.io.js that Socket.IO automatically serves:

demos/basic-p2p/index.html

<script src="/socket.io/socket.io.js"></script>➤

<script src="js/main.js"></script>
</body>
</html>

The main.js file depends on the contents of the socket.io.js file, which is the

Socket.IO client, so be sure to include the <script> tag that points at main.js
second in the HTML.

Chapter 2. Working with a Signaling Channel • 32

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Back in the main.js file itself, in the “Signaling-Channel Setup” area up top,

let’s connect to the signaling channel and attach some code to the connect
event that will output a message to the browser console if the connection is

successful. You can declare an sc variable to hold onto the namespaced sig-

naling channel as returned by Socket.IO’s io object’s connect method:

/**
* Signaling-Channel Setup
*/

const namespace = prepareNamespace(window.location.hash, true);

const sc = io.connect('/' + namespace);➤

➤

sc.on('connect', function() {➤

console.log('Successfully connected to the signaling channel!');➤

});➤

If your browser’s JavaScript console isn’t already open, open it. Reload the

page and you should see the success message logged in the console: “Success-

fully connected to the signaling channel!”

Right now, anyone using your app will automatically connect to the signaling

channel by loading the page in the browser. That’s not the behavior we want,

though: the signaling channel’s connect event will eventually start the process

of establishing the WebRTC call. To give users better control, then, let’s rewrite

the code so users don’t connect to the signaling channel until they click the

Join Call button that we went to all the trouble of setting up.

Connecting to the Signaling Channel Manually

Remember how you set up a handleCallButton() function in Writing Named

Functions as Callbacks, on page 22? Let’s call two more functions from

within it: joinCall() and leaveCall(). The definitions for those functions can go right

below the handleCallButton function definition:

demos/basic-p2p/js/main.js

/**
* User-Interface Functions and Callbacks
*/

function handleCallButton(event) {
const call_button = event.target;
if (call_button.className === 'join') {
console.log('Joining the call...');
call_button.className = 'leave';
call_button.innerText = 'Leave Call';
joinCall();➤

} else {
console.log('Leaving the call...');

report erratum • discuss

Connecting to the Signaling Channel • 33

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

call_button.className = 'join';
call_button.innerText = 'Join Call';
leaveCall();➤

}
}

function joinCall() {
sc.open();

}

function leaveCall() {
sc.close();

}

There will be more to add to both the joinCall and leaveCall functions. But to get

started, they are responsible only for opening and closing the Socket.IO sig-

naling channel, which provides its own open() and close() methods. We just

need to call them on the sc object.

Now that your JavaScript is set to manually open and close the connection

to the signaling server, you need to modify how the signaling channel is con-

figured by passing in an options object that sets autoConnect to false:

demos/basic-p2p/js/main.js

const sc = io.connect('/' + namespace, { autoConnect: false });

Reload the page in your browser again. You shouldn’t see the “Successfully

connected to the signaling server!” in the JavaScript console until you click

the Join Call button. If you click the button a few more times, joining and

leaving the call, you’ll see the success message each time you click Join Call.

Nice!

Because the signaling channel is powered by Socket.IO, it has an active prop-

erty that returns true when the signaling server is connected and false when

it’s not. If you like, hit the Join Call button and then type sc.active in your

browser’s JavaScript console and hit Return. It should report true. Hit the

Leave Call button, type sc.active again, and it should report false. That’s an easy

way to verify that your button really is opening and closing the signaling

channel.

Preparing Placeholders for the Remaining Signaling Callbacks

One more task, and then we’ll have everything in place for writing the

remaining signaling-channel code and WebRTC connection logic in the next

chapter’s coverage of Building Connection Logic to the “Perfect Negotiation” Pat-

tern, on page 51. Find the “Signaling-Channel Functions and Callbacks” area

of the JavaScript file. Let’s write a wrapper function, registerScCallbacks() that

Chapter 2. Working with a Signaling Channel • 34

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

will register callbacks for the four signaling-channel events that we saw in

server.js (connect, connected peer, disconnected peer, and signal), and put placeholder

function definitions for them on the lines below.

The anonymous callback on the connect event that logs “Successfully connect-

ed…” can also be rewritten as a named function, in case there’s more to do

with that event in the future. (Spoiler alert: there will be.) Putting it all

together, your signaling callbacks will look like this:

/**
* Signaling-Channel Functions and Callbacks
*/

function registerScCallbacks() {
sc.on('connect', handleScConnect);
sc.on('connected peer', handleScConnectedPeer);
sc.on('disconnected peer', handleScDisconnectedPeer);
sc.on('signal', handleScSignal);

}

function handleScConnect() {
console.log('Successfully connected to the signaling server!');
}

function handleScConnectedPeer() {
}

function handleScDisconnectedPeer() {
}

function handleScSignal() {
}

There are plenty of modifications to those function definitions on the way, of

course, but for now they’re enough to prevent the browser from complaining

about missing references to them in the stack of sc.on events that registerScCall-
backs() assigns.

And speaking of that wrapper function, the last thing to do is call it up at the

top of the file. This completes your “Signaling-Channel Setup” area:

demos/basic-p2p/js/main.js

/**
* Signaling-Channel Setup
*/

const namespace = prepareNamespace(window.location.hash, true);

const sc = io.connect('/' + namespace, { autoConnect: false });

registerScCallbacks();➤

report erratum • discuss

Connecting to the Signaling Channel • 35

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Next Steps

You’ve now got several key foundational pieces in place for your peer-to-peer

video-call app. You’ve constructed a user interface out of top-notch semantic

HTML and modern CSS. You’ve written some important responsive-design

features, which are essential to making your app accessible across the full

range of web-enabled devices. You’ve also connected to your signaling channel

and created a set of placeholder functions for triggering and responding to

the signaling channel’s events. In the next chapter, you’ll complete the app

by building out those functions to establish your first peer connection in

WebRTC.

Chapter 2. Working with a Signaling Channel • 36

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 3

Establishing a Peer-to-Peer Connection

In the previous chapter, you constructed the basic interface for a video-call

app. You also explored and wrote a number of placeholder callback functions

to prepare the way for triggering and responding to the signaling channel’s

events.

In this chapter, you’ll build on that work to enable two peers to set up a

WebRTC connection and stream video directly to each other. At first, of course,

the two peers will just be you and yourself with two different browser windows

opened to the same namespace. To prevent skull-shattering feedback while

you test things out, you’ll start off with the audio disabled.

The goal is to to work systematically and get some foundational WebRTC code

working as quickly as possible, which you’ll further refine and make backward-

compatible over the next few chapters. To get started, you’ll learn how to

request access to a user’s camera and microphone. You’ll then dive in to do

meaningful work with the core pieces of a peer-to-peer app, including media

streams and the WebRTC RTCPeerConnection interface. You’ll also set up your

peer-connection logic by writing a real-world implementation of the “perfect

negotiation” pattern found in the WebRTC specification.

Requesting User-Media Permissions

Before we get into the heavy-duty WebRTC code, let’s start off by handling

an essential task that’s also pretty awesome and fun: requesting permission

for your app to access a user’s camera and then displaying the camera’s live

video in the HTML’s self video element.

Start by declaring a new variable called $self near the top of the main.js file.

Note the variable name is prefixed with a dollar sign. While self would be a

more convenient name, browsers have a built-in self property on the global

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

window object.1 So we will go with $self and assign it an object literal with a

mediaConstraints property:

demos/basic-p2p/js/main.js

const $self = {
mediaConstraints: { audio: false, video: true },

};

We’ll talk about those constraints in a moment. For now, find the area of

main.js labeled “User-Media Functions” and define a new function called

requestUserMedia(). This time, though, you’ll need to preface the function keyword

with async. I’ll explain that along with the rest of the function in a moment,

but I promised fun first. So go ahead and build your function to look like this:

/**
* User-Media Functions
*/

async function requestUserMedia(media_constraints) {
$self.mediaStream = new MediaStream();
$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

$self.mediaStream.addTrack($self.media.getTracks()[0]);
document.querySelector('#self')
.srcObject = $self.mediaStream;

}

Now be sure to call that function, passing in the $self.mediaConstraints object, in

the “User-Media Setup” area of your JavaScript file:

/**
* User-Media Setup
*/

requestUserMedia($self.mediaConstraints);

When you reload the app, you should be greeted by your browser’s dialog box

for media permissions, such as the one for Firefox as shown in the first

screenshot on page 39.

Be sure to click Allow on the permissions dialog. While you can opt to allow

the browser to remember your decision, my own preference is to always be

prompted for media permissions when I’m developing something for WebRTC.

That serves as a frequent reminder of the flow of the interface for first-time

users. Once you click allow, after a beat, you should see your very own face

(as shown in the second screenshot on page 39), streaming in real time,

staring right back at you from an otherwise static HTML page.

1. https://developer.mozilla.org/en-US/docs/Web/API/Window/self

Chapter 3. Establishing a Peer-to-Peer Connection • 38

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/Window/self
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

See? Fun stuff. But what’s happening with that requestUserMedia() function you

wrote?

Let’s start by looking inside the body of the function. It sets two new properties

on the $self object: stream and media. The stream property is assigned a new

MediaStream object, which will hold onto any media tracks returned by the

report erratum • discuss

Requesting User-Media Permissions • 39

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

user’s devices. The relationship between streams and tracks is a little compli-

cated, but for now it’s enough to think of a stream as a container for tracks.

Tracks represent the actual audio and video data returned from a user’s

camera and microphone. Again, we’re requesting only video for now.

Once a user grants permission, the media property holds onto a reference to

the user’s device returned by the navigator.mediaDevices.getUserMedia() method.

More in the next section on what that await keyword is doing. The media con-

straints passed to getUserMedia() are very basic. Recall how we set them up on

the $self.mediaConstraints property:

demos/basic-p2p/js/main.js

const $self = {
mediaConstraints: { audio: false, video: true },

};

Media constraints are always expressed as an object literal. At their most

basic, constraints are about seeking a user’s permission to access devices

like the camera and microphone. In other words, constraints not necessarily

about features: your app still needs to work with audio or video returned by

a user’s media devices—once they’ve granted permission. In Chapter 7,

Managing User Media, on page 173, you’ll test for and apply additional con-

straints to the requested user media, but a simple set of constraints is all

that’s needed for now.

The constraints object you wrote specifies that your app is requesting permis-

sion to access to the user’s camera (video: true), but not the microphone (audio:
false). Remember, for the time being, we’re disabling audio in development by

not even asking permission to access the mic. Doing that at the constraint

level is to make darn sure that your computer doesn’t go full Jimi Hendrix

on the feedback. You’ll build the necessary controls to safely develop audio-

enabled WebRTC apps a little later in the book, in Adding Mic and Camera

Toggles, on page 98.

Your requestUserMedia() function uses the getTracks() method on the $self.media
object to access the data-containing tracks from the user’s devices. Note that

getTracks() returns an array of tracks; the [0] tacked onto the end means we’re

just interested in the very first, and in this case, the only track—the video

coming off the user’s camera. The function passes that track directly into the

addTrack() method on the MediaStream object.

Once the track has been added to $self.mediaStream, the requestUserMedia() function

uses document.querySelector to select the self video element from the DOM and

set its srcObject property—that is, the video source for the element to play—to

Chapter 3. Establishing a Peer-to-Peer Connection • 40

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

$self.mediaStream. As you’ll see, the technique for setting video on the remote

peer’s srcObject is almost identical. So much so that we can abstract that one-

off document.querySelector line into a small, reusable user-media function:

demos/basic-p2p/js/main.js

function displayStream(stream, selector) {
document.querySelector(selector).srcObject = stream;

}

Now we can call that function inside of requestUserMedia:

demos/basic-p2p/js/main.js

async function requestUserMedia(media_constraints) {
$self.mediaStream = new MediaStream();
$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

$self.mediaStream.addTrack($self.media.getTracks()[0]);
displayStream($self.mediaStream, '#self');➤

}

We’ll make use of the displayStream() function later, when we’re handling the

incoming media stream from the remote peer in Receiving Media Tracks, on

page 59.

Async, Await, Say What?

Stepping outside the function now: there’s that curious async keyword hanging

out in front of the more familiar function keyword. The async keyword is used

to define the requestUserMedia function so it can make use of a related keyword,

await.

Up to this point, we’d been using an old-school JavaScript pattern for handling

asynchronous code: callback functions executed in response to events. The

Join Call click event uses this pattern, as do all of the signaling-channel

events we set up at the end of the previous chapter. In pseudocode:

waitForSomethingAsync('done', doSomething);

JavaScript syntax has evolved to make asynchronous code more readable.

The old-school callback pattern looks pretty good in that simple case above,

but it can lead to “pyramids of doom,” with callbacks inside of callbacks inside

of callbacks. JavaScript’s evolution to address that problem came in the form

of something called the Promise object. We don’t need to go too deep on that

here, but promises make async functions a little more readable with chainable

methods like then():

waitForSomethingAsync()
.then(doSomething)

report erratum • discuss

Requesting User-Media Permissions • 41

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The async and await keywords transform that pseudocode to look a little more

familiar to developers used to functional programming in JavaScript. Func-

tional programming is what we’ve been doing this whole chapter. Instead of

chaining together a bunch of then() calls, we can use async and await:

async function waitForSomethingAsync() { return data; }
async function doSomething(data) { }

doSomething(await waitForSomethingAsync());

In that example, await appears right where the data argument gets passed into

the doSomething() function. But await can also appear in the body of an outer

asynchronous function:

async function someOuterAsyncFunction() {
var data = await waitForSomethingAsync();
doSomething(data);

}

In that case, the doSomething() function will not execute until data has been

returned from waitForSomethingAsync(). In async-speak, it’s not the data being

returned, but rather a Promise resolving with the data the doSomething() function

needs.

So why do we care about async and await in the context of media permissions?

The power of asynchronous code is it doesn’t bring your whole application to

a halt. And the user-media API we used for the fun stuff, navigator.mediaDevices
.getUserMedia(), is itself promise-based and asynchronous. Among other things,

that means that even while the media permissions dialog is showing, users

can continue to interact with the page: reload the app in your browser and

try clicking the Join Call button while the permissions dialog box is open.

The button keeps working, no problem.

The requestUserMedia() function, being async itself, will not move ahead until it

has the permissions and stream from the user’s media. Without await, the

getTracks() method would be called on $self.media too soon, before its promise

has resolved—resulting in no data. JavaScript would throw an error in that

case, and you would be denied the chance to admire your own face in the

browser window.

If you’re intrigued by asynchronous JavaScript and want to learn more, check

out Faraz Kelhini’s Modern Asynchronous JavaScript [Kel21].

Setting Up the Peer Connection

All right. Your video-call app is coming together. You’ve prepared the UI and

set up the signaling channel for users to join whenever they are ready, and now

Chapter 3. Establishing a Peer-to-Peer Connection • 42

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

you’ve got streaming video set up on the self side of the connection. It’s time

to put all of those pieces together and get a peer connection set up and

established using WebRTC.

Let’s kick things off by returning to the top of main.js. Once there, you can

modify the $self object to include an rtcConfig property set to null. Eventually,

$self.rtcConfig will include some important WebRTC configuration values (see

Configuring a WebRTC App for Public Deployment, on page 198). But for testing

WebRTC on a local network, initially setting the configuration to null will suffice.

Immediately below $self, declare a new $peer variable and assign it an object

literal—just like $self. All $peer should contain for now is a connection property

to hold onto an instance of the RTCPeerConnection object:

demos/basic-p2p/js/main.js

const $self = {
rtcConfig: null,➤

mediaConstraints: { audio: false, video: true },
};

const $peer = {➤

connection: new RTCPeerConnection($self.rtcConfig),➤

};➤

And that’s it! App finished.

Okay, not really. Not by a long shot. I’m just being mean. There’s so much

more to come. Those few lines of code are accomplishing a lot, though. That’s

especially true for the $peer.connection property and its reference to a new

RTCPeerConnection instance, which is the key piece of everything left to build.

But before we leave the enchanted land of variable assignment and make a

triumphant return to the kingdom of callback function definitions, let’s set

a few more properties on $self, just below the rtcConfig property we added:

demos/basic-p2p/js/main.js

const $self = {
rtcConfig: null,
isPolite: false,➤

isMakingOffer: false,➤

isIgnoringOffer: false,➤

isSettingRemoteAnswerPending: false,➤

mediaConstraints: { audio: false, video: true },
};

We’ll return to each of those new properties in time. Their purpose will be to

track various states on $self as a WebRTC connection is established. But the

one that is most interesting for the time being is the first one: $self.isPolite,

report erratum • discuss

Setting Up the Peer Connection • 43

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

which is initially set to false. That means we’ve admitted to the world that each

of us, as $self, is surly and rude. But why?

Achieving Asymmetric Function from Symmetric Code

You’re about to discover many mind-bending qualities of WebRTC. The primary

source of its many mind-benders is loading the same codebase—HTML, CSS,

and JavaScript—in the browsers on both ends of a WebRTC call. That means

the code is symmetric: each browser loads the exact same code. There’s no

need to goof around writing server-side logic that sends different code to dif-

ferent peers.

As we established in Designing Peer-to-Peer UI Patterns, on page 12, everyone

on the call is just a joiner. That choice frees us up to maintain just a single

symmetric WebRTC codebase. Like the symmetric joiner interface it supports,

our codebase will provide both peers (and eventually, in Chapter 6, Managing

Multipeer Connections, on page 133, all peers) with the ability to initiate and

answer offers to connect over WebRTC.

“But wait,” you might say. “Why are we suddenly talking about initiating and

answering ‘offers to connect’? Didn’t we explicitly set up a joiner pattern,

rather than a caller pattern?” Yes, yes we did. The only real piece of UI in our

interface—the Join Call button—means we aren’t going to worry at all about

who’s calling whom. The peers just join the call. Your button doesn’t lie.

But just because we’re not going to worry about caller and answerer roles

doesn’t mean that WebRTC won’t. I hate to talk about WebRTC behind its

back like this, but you should know that it worries quite a lot—about caller

and answerer roles and many other things that we’ll get to soon enough. The

RTCPeerConnection instance that we’re hanging onto in $peer.connection is basically

a giant worrywart. And like most worrywarts, it doesn’t quite know how to cope

on its own with all the things that might go wrong. We almost have to be like

good therapists and give RTCPeerConnection some solid coping strategies to help

manage its many worries.

That brings us back to the $self.isPolite value: it represents the core principle

behind establishing a worry-free WebRTC connection. For each set of two

peers connecting over your app, one peer will be polite ($self.isPolite === true),
and one will be impolite ($self.isPolite === false). So even though the same code

appears in both peers’ browsers, each peer will behave a little differently,

being either polite or impolite, depending on the circumstances of the call. And

that’s how we’ll be able to pull off asymmetric behavior from symmetric code.

Chapter 3. Establishing a Peer-to-Peer Connection • 44

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Establishing the Polite Peer

That all might sound reasonable. But if the code is still exactly the same in

both browsers, including the opening lines of main.js that set $self.isPolite to false,
what sorcery is required to establish that one of the peers is polite?

We can consider a few different approaches to establish politeness. We could

write a function that plays a virtual game of rock-paper-scissors between the

two peers over the signaling channel before they connect. Or we could make

it weird and administer a short personality test to determine which of the two

peers really is the rude one.

Or we could establish politeness based on the order peers join the call. The

first person to click Join Call will be polite, being prompt and punctual (okay,

actually, they’ll be first to connect to the signaling channel), and the second

person to join will be impolite. Probabilistically speaking, there is a very low

chance that both peers might join the room at exactly the same fraction of a

second. But it’s so improbable that we don’t have to worry about it.

Recall that the signaling channel broadcast emits a connected peer event. The

broadcast emit is special, because it gets sent to everyone on the namespace

except the person who triggered the event (otherwise, connecting peers would

hear their own connected peer events). Every time a peer joins the namespaced

signaling channel, the connected peer event fires. You’ve already written a call-

back function in the main.js file to handle the connected peer event. Let’s open

up its definition, and add a single line that sets $self.isPolite to true:

demos/basic-p2p/js/main.js

function handleScConnectedPeer() {
$self.isPolite = true;➤

}

Here again, we appear to end up with another symmetric paradox: both peers

join the call, meaning both peers will trigger the signaling server to broadcast

the connected peer event to the other peer. That’s true.

The trick is that when the first peer joins the call, the connected peer event winds

up in Zen koan territory: If a tree falls in the forest and no one is around to

hear it, does it make a sound? When the first peer triggers the connected peer
broadcast-emit event, the other peer isn’t around to receive it. The second peer

hasn’t connected yet, and likely will not connect in the nanosecond timeframe

required to receive the event.

report erratum • discuss

Setting Up the Peer Connection • 45

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

But—when the second peer connects, connected peer fires again—only this time,

the first peer is around to receive it. And so the first peer becomes the polite

one ($self.isPolite === true, as set in the handleScConnectedPeer() callback function),

while the second peer stays impolite ($self.isPolite === false, as set near the top

of the main.js file). Even though the second peer also has the handleScConnectedPeer
function available, it will never execute, because the second peer will not hear

a connected peer event.

Adding Peer-Connection Callbacks

Hold onto the fact that one peer on a call is polite, and the other is impolite,

while you stack up a whole new collection of events tied to the RTCPeerConnection
object. Find the “WebRTC Functions and Callbacks” area of the main.js file,

and let’s write these events inside their own wrapper function like we did with

the signaling channel events on Preparing Placeholders for the Remaining

Signaling Callbacks, on page 34. We’ll execute this registerRtcCallbacks() function

when a user connects to the signaling channel:

demos/basic-p2p/js/main.js

function registerRtcCallbacks(peer) {
peer.connection.onnegotiationneeded = handleRtcConnectionNegotiation;
peer.connection.onicecandidate = handleRtcIceCandidate;
peer.connection.ontrack = handleRtcPeerTrack;

}

Those events use different syntax for registering callbacks from what we have

seen so far. Because these three events—negotiationneeded, icecandidate, and track—
are so commonly used, the RTCPeerConnection object gives us shorthand proper-

ties for each of them, prefixed with on. (You probably have seen this before

with the DOM: you can use domObj.addEventListener('click', handleClick) or the short-

hand domObj.onclick = handleClick. Both syntaxes achieve the same thing.)

Below the registerRtcCallbacks() definition, you can drop in the definition of

handleRtcPeerTrack(). Because adding media tracks is necessary only for apps

that include streaming media, we’ll keep that function definition with the

application-specific code:

function handleRtcPeerTrack() {
// TODO: Handle peer media tracks

}

The onnegotiationneeded and onicecandidate events, however, are generic across any

WebRTC apps you might build, so we’ll isolate them in the “Reusable WebRTC

Functions and Callbacks” area of the JavaScript file:

Chapter 3. Establishing a Peer-to-Peer Connection • 46

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

/**
* Reusable WebRTC Functions and Callbacks
*/

async function handleRtcConnectionNegotiation() {
// TODO: Handle connection negotiation

}
function handleRtcIceCandidate() {

// TODO: Handle ICE candidates
}

We’ll build out those two reusable functions here, and return to the app-

specific handleRtcPeerTrack() function later.

The handleRtcConnectionNegotiation() function will use await in its body, so we prefix

it with async. It awaits a promise-based RTC peer connection method, setLocalDe-
scription(), which prepares an offer according to the Session Description Protocol

(SDP; see Making an Offer They Can’t Refuse, on page 52). SDP offers include

details on media capabilities on the self side of the call. While the body of the

handleRtcConnectionNegotiation() function awaits the offer returned by setLocalDescrip-
tion(), $self.isMakingOffer is set to true (recall we initially set the isMakingOffer property

to false on $self). Once the offer—held in $peer.connection.localDescription—has been

sent over the signaling channel, $self is no longer in the process of making an

offer, so $self.isMakingOffer gets set back to its initial state, false:

demos/basic-p2p/js/main.js

async function handleRtcConnectionNegotiation() {
$self.isMakingOffer = true;
console.log('Attempting to make an offer...');
await $peer.connection.setLocalDescription();
sc.emit('signal', { description: $peer.connection.localDescription });
$self.isMakingOffer = false;

}

Now don’t be fooled by await, in that function or anywhere else: under most

conditions, the wait is less than a blink of an eye. When we get to handling

SDP offers (and answers) in Building Connection Logic to the “Perfect Negoti-

ation” Pattern, on page 51, you’ll see that blinks of an eye can still matter—

especially to a worrywart WebRTC peer connection.

The handleRtcConnectionNegotiation() function generates and sends SDP offers, and

the handleRtcIceCandiate() callback must do roughly the same for ICE candidates.

I know, that name in all caps makes me think of awful things, too. But ICE

in this case stands for Interactive Connectivity Establishment,2 an IETF-

defined protocol that enables browsers to describe how they can be reached

2. https://tools.ietf.org/html/rfc8445

report erratum • discuss

Setting Up the Peer Connection • 47

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://tools.ietf.org/html/rfc8445
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Which Browsers Does This Code Support?

Elsewhere in the book, you’ve read that browser support for WebRTC is very good.

But support isn’t always uniform for all features—that’s the case for any web API.

Browsers must support two baselines for your code to work: RTCPeerConnection

methods like setLocalDescription() must return a Promise (allowing them to work with

await), and the standardized navigator.mediaDevices.getUserMedia() method must be available.

Those two features were implemented at different times in different browsers, but

ultimately the code you’re writing here works in at least Chrome 53, Edge 79, Firefox

66, and Safari 11. Those are all pretty ancient desktop browsers by almost any

measure.

Safari lags all other browsers in regard to one feature: implicit rollback on setRemote-
Description, which didn’t arrive until Safari 15.4 (elsewhere it showed up in Chrome

80, Edge 80, and Firefox 70). You can read about accommodating older Safaris in

Appendix 1, Connection Negotiation in Legacy Browsers, on page 225. But apart from

that, we’ll write any other fallback code as needed throughout the book.

over the internet or a local network. While the offer in localDescription describes the

media that will flow over the connection, ICE candidates describe possible peer-

to-peer routes over the network. WebRTC needs both to establish a connection.

The handleRtcIceCandiate() callback is less complicated to write. Whenever a

candidate becomes available, we just need to send it over the signaling

channel, attached again to the signal event.

demos/basic-p2p/js/main.js

function handleRtcIceCandidate({ candidate }) {
console.log('Attempting to handle an ICE candidate...');
sc.emit('signal', { candidate: candidate });

}

Destructuring Assignment

Something might look odd to you in the handleRtcIceCandiate() callback function definition:

the { candidate } in curly braces that gets passed into the function as an argument.

Ordinarily, when we see curly braces surrounding a value, they look more like what

gets sent over the signaling channel: { candidate: candidate }, with one value and another

separated by a colon, :. Good, old-fashioned object literals, just like Grandmother

used to make.

A newer feature available in JavaScript syntax is something called destructuring

assignment. It’s a shorthand way of pulling a value out of an object literal and

assigning the value to its own variable. Here’s a simple example:

const obj = { one: 1, two: 2 };

Chapter 3. Establishing a Peer-to-Peer Connection • 48

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

If we were interested in assigning the value of one to its own variable, we could write

const one = obj.one; But destructuring assignment allows us to write this instead:

const {one} = obj;
console.log(one); //-> 1

In short, the value in the curly braces gets assigned as a standalone representation

of whatever matching property exists in the object—assuming the property exists. If

the property doesn’t exist, the value is undefined:

const {three} = obj;
console.log(three); //-> undefined

So what function handleRtcIceCandidate({ candidate }) does is extract the value of candidate from

the chunk of data returned by $peer.connection.onicecandidate and create a local candidate
variable that we can use within the function itself.

Sending Media Tracks

We should test out those two RTC callbacks. The onnegotiationneeded event kicks

off the establishment of a WebRTC call. But it’s adding media to the peer

connection that causes onnegotiationneeded to fire.

While you’ve already set your local stream to appear on the self <video> ele-

ment, you need to also add the tracks from that stream to the peer connection

so that the remote peer can ultimately receive them. We’ll handle the receiving

side in Receiving Media Tracks, on page 59. For now, let’s write the track-

sending logic as another little reusable function, below the other user-media

functions:

demos/basic-p2p/js/main.js

function addStreamingMedia(stream, peer) {
if (stream) {
for (let track of stream.getTracks()) {

peer.connection.addTrack(track, stream);
}

}
}

We’ll pass the peer instance and the self media stream into that function.

Assuming a media stream is set on self, a for loop runs through the tracks

and adds them to the peer connection. Don’t succumb to a false sense of déjà

vu here: RTCPeerConnection has an addTracks() method, just like MediaStream does—as

we saw in Requesting User-Media Permissions, on page 37. Here, though,

we’re adding media tracks to the call, not to a MediaStream.

report erratum • discuss

Setting Up the Peer Connection • 49

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

While we could call addStreamingMedia() along with registerRtcCallbacks() directly

inside of the handleScConnect() callback, let’s take an opportunity to future-proof

the code a bit. Streaming media is one possible feature of a WebRTC call. As

you will see in Chapter 4, Handling Data Channels, on page 63, data channels

represent other features. We can write a wrapper function called establishCallFea-
tures() which wraps registerRtcCallbacks() together with any app-specific call fea-

tures, like adding streaming user-media. Add this function definition in the

“Call Features & Reset Functions” area of the JavaScript file:

demos/basic-p2p/js/main.js

/**
* Call Features & Reset Functions
*/

function establishCallFeatures(peer) {
registerRtcCallbacks(peer);
addStreamingMedia($self.mediaStream, peer);

}

Note that it is essential to register the WebRTC callbacks before adding media

or any other features to the connection. Adding the media to the RTCPeerConnec-
tion instance triggers the negotiationneeded event, which in turn sets the entire

connection-negotiation process in motion. If media or other features are added

before a callback is set to handle negotiationneeded, the event will fire without

executing a callback, leaving users unable to initiate a WebRTC connection.

So be sure to call registerRtcCallbacks() at the very top of the establishCallFeatures()
function definition.

With the establishCallFeatures() function finished, call it from within the handleSc-
Connect() callback, which is now complete, generic, and portable across any

peer-to-peer WebRTC app you ever want to write:

demos/basic-p2p/js/main.js

function handleScConnect() {
console.log('Successfully connected to the signaling server!');
establishCallFeatures($peer);➤

}

Go ahead and refresh your browser and click the Join Call button. You’ll now

see some new messages logged to the console: one announcing “Attempting

to make an offer…,” followed by more than one announcing “Attempting to

handle an ICE candidate….”

With the handleRtcConnectionNegotiation() and the handleRtcIceCandidate() callback

functions defined and now tested out, you now have all of the sending logic

in place for establishing a peer connection. The big piece remaining is the

Chapter 3. Establishing a Peer-to-Peer Connection • 50

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

receiving logic, which will handle descriptions and ICE candidates coming in

over the signaling channel.

Building Connection Logic to the “Perfect

Negotiation” Pattern

We’re going to build the connection’s receiving logic according to the “perfect

negotiation” pattern described in the WebRTC specification:

This pattern has advantages over one side always being the offerer, as it lets

applications operate on both peer connection objects simultaneously without risk

of glare (an offer coming in outside of “stable” state). The rest of the application

may use any and all modification methods and attributes without worrying about

signaling state races.3

That’s a dense quotation, but here’s the essence: in symmetric WebRTC apps

like the one you’re building, both sides of the connection can pass an offer

to the other. That’s essential because it’s impossible to know which peer is

going to be able to run setLocalDescription() and pass an offer across the signaling

channel first. It might not necessarily be the first peer to join the call. A slow

browser, a poor network connection, and even a delay in granting media

permissions can all factor into the timing of a peer’s first offer.

The catch is once the RTCPeerConnection object on one side of a peer connection

has prepared an offer to send over the signaling channel, it expects an answer

in response. In fact, under typical conditions, the RTCPeerConnection object won’t

respond to anything but an answer. If both sides of a connection have prepared

offers to send out, they basically end up in a stalemate—what the WebRTC

spec calls “glare.” It’s a lot like a face-to-face conversation when two people

start speaking at the same time, as Jan-Ivar Bruaroey points out.4 Assuming

the conversation doesn’t escalate into a shouting match, one person in such

a situation will usually say, “Oh, I’m sorry—I interrupted you.” That’s concep-

tually identical to the behavior of the polite peer in establishing the connection.

If you’re wondering why we can’t live in a harmonious world where we tell

both peers to be polite, consider that we’d end up in the equivalent of a

highly annoying, endless exchange like, “Sorry! Please go ahead!” “No, you go

ahead!” “Oh, I couldn’t!” “No, please!” “Really, whatever you have to say is

much more important!” “No, my thing is stupid. I insist you talk first!” And

on like that forever. The impolite peer is doing a heroic service by saving the

connection from devolving into such tediousness.

3. https://www.w3.org/TR/webrtc/#perfect-negotiation-example
4. https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/

report erratum • discuss

Building Connection Logic to the “Perfect Negotiation” Pattern • 51

https://www.w3.org/TR/webrtc/#perfect-negotiation-example
https://blog.mozilla.org/webrtc/perfect-negotiation-in-webrtc/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Making an Offer They Can’t Refuse

Session Description Protocol (SDP) offers and answers are almost exclusively the

business of the browsers producing them. There is no need to worry about the contents

of SDP offers and answers when developing with the browser’s WebRTC APIs. As

WebRTC developers, we only need to make sure browsers correctly generate and pass

them over the signaling channel.

For the dangerously curious, here is a tiny, reformatted portion of an SDP offer as

generated by Firefox Developer Edition in a LAN environment:

RTCSessionDescription { type: "offer", sdp: "
v=0
o=mozilla...THIS_IS_SDPARTA-99.0 [...] 0 IN IP4 0.0.0.0
s=-
t=0 0
a=sendrecv
[...]
m=video 64423 UDP/TLS/RTP/SAVPF 120 124 121 125 126 127 97 98
c=IN IP4 0.0.0.0
[...]
a=rtpmap:120 VP8/90000
a=rtpmap:124 rtx/90000
a=rtpmap:121 VP9/90000
a=rtpmap:125 rtx/90000
a=rtpmap:126 H264/90000
a=rtpmap:127 rtx/90000
a=rtpmap:97 H264/90000
a=rtpmap:98 rtx/90000

" }

The opening lines describe the session. On the lines opening with m=video, we see a

portion of the media description for video, including the CODECs the browser supports

(VP8, VP9, and H264, in this case). Earlier in WebRTC’s history, a modification

technique called SDP munging was sometimes necessary to force the use of specific

CODECs. SDP munging is generally no longer good practice—and was frankly pretty

shady even at the time, especially for peer-to-peer connections.a

For the truly SDP obsessed, the IETF has an archived informational document called

Annotated Example SDP for WebRTC.b It walks through the organization and

semantics of a variety of SDP offers and answers, all with pointers to the galaxy of

different specifications governing the correct form and content of each line. You can

compare those against the contents of your own SDP offer by writing $peer.connec-
tion.localDescription and hitting return in your browser’s JavaScript console after you

click the Join Call button.

a. https://bloggeek.me/webrtc-sdp-munging-prohibited/
b. https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-14

Chapter 3. Establishing a Peer-to-Peer Connection • 52

report erratum • discuss

https://bloggeek.me/webrtc-sdp-munging-prohibited/
https://datatracker.ietf.org/doc/html/draft-ietf-rtcweb-sdp-14
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Back to the code: all of the perfect-negotiation logic will appear inside the

handleScSignal() callback, one of the callback functions you already defined for

the signaling channel. Let’s return to the function’s definition, make it async,
and pass into it the data received over the signaling channel. Inside the

function, set up an if/else statement that will kick into action depending on

whether it’s an ICE candidate or description that’s been received:

async function handleScSignal({ description, candidate }) {
if (description) {
// Work with an incoming description (offer/answer)

} else if (candidate) {
// Work with an incoming ICE candidate

}
}

That sets the function up to handle either a description or a candidate, which

we conveniently access using destructuring assignment again, this time with

two values separated by a comma: {description, candidate}. If a description—an

offer or an answer—comes across, candidate will be undefined and therefore false
in the if statement. If it’s a candidate, description will evaluate as false.

Determining Whether to Ignore Offers

If it turns out a peer is ignoring offers, all we need to do is exit the handleScSignal()
function. So we’ll write that logic first. To determine whether a peer is ignoring

offers, we need to work through an unavoidably dense set of true/false conditions

to either exit or, for the polite peer, continue on to an “Oh, I’m sorry—I inter-

rupted you” state. Let’s have another dramatic reveal, and then talk it through:

demos/basic-p2p/js/main.js

async function handleScSignal({ description, candidate }) {
if (description) {

const ready_for_offer =
!$self.isMakingOffer &&
($peer.connection.signalingState === 'stable'

|| $self.isSettingRemoteAnswerPending);

const offer_collision =
description.type === 'offer' && !ready_for_offer;

$self.isIgnoringOffer = !$self.isPolite && offer_collision;

if ($self.isIgnoringOffer) {
return;

}

} else if (candidate) {

}
}

report erratum • discuss

Building Connection Logic to the “Perfect Negotiation” Pattern • 53

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That’s a dense chunk of code. What it’s doing at every turn is looking for true

and false conditions. It reads a little more sensibly by starting at the bottom,

with the if ($self.isIgnoringOffer) block, and working back up to the top. What that

if statement does is exit the function, thanks to that one-line return; statement,

when $self is ignoring an incoming offer.

But to determine whether $self is ignoring offers, we need the line above, which

assigns either a true or false value to $self.isIgnoringOffer:

$self.isIgnoringOffer = !$self.isPolite && offer_collision;

What that means is $self will ignore offers if it’s impolite (!$self.isPolite === true)
and (&&) if there’s an offer collision (offer_collision === true). An impolite peer will

evaluate as $self.isPolite === false, so adding an exclamation mark in front of

$self.isPolite means not. In programming terms, recall that the exclamation mark

returns the opposite value of $self.isPolite. So stick with it: with the exclamation

point, the impolite peer will evaluate as true here, and the polite peer will

evaluate as false. I find it helpful to say “not” aloud when I encounter an

exclamation point in Boolean-happy code like this, and then remind myself

that it’s only ever the impolite peer who ignores offers.

The polite peer, by contrast, will never ignore offers: false on one side of an

AND expression (&&) will always make the whole expression false. That’s the

polite peer saying, “Oh, I’m sorry—you go ahead” in the face of an offer

collision.

Impolite peers do not simply ignore all offers. Determining whether there is

an offer collision, then, is the other piece of information needed to set the

$self.isIgnoringOffer state to either true or false. The value of offer_collision will be

either true or false based on this line above $self.isIgnoringOffer:

const offer_collision =
description.type === 'offer' && !ready_for_offer;

This will assign a value of true to offer_collision if two things are true: 1) the

incoming description.type is offer (not answer) and 2) the $self side of the call is not

ready to receive an offer: !ready_for_offer. The syntax looks a little wild, but just

remember that a single = sign is for assignment—giving offer_collision a value—

and a triple === is a strict-comparison operator: is description.type equal to and

of the same type (string) as 'offer'? If that is true, and the peer is not ready to

receive an offer, then there’s an offer collision.

And that takes us to the top line of this mountainous climb, where there’s

one final tangle of Boolean values to straighten out:

Chapter 3. Establishing a Peer-to-Peer Connection • 54

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

const ready_for_offer =
!$self.isMakingOffer &&
($peer.connection.signalingState === 'stable'

|| $self.isSettingRemoteAnswerPending);

Let’s break this one down, too. The $self side of the connection will be ready

for an offer (ready_for_offer === true) if it is not in the middle of making an offer

of its own and if at least one of two other things is true: either 1) the peer-

connection’s signaling state is 'stable', or 2) the $self side of the connection is

trying to set a remote answer. While the value of signalingState changes over the

course of connection negotiation,5 the only state we’re interested in in this

logic is stable. In that state, a peer connection can accept incoming offers.

The other two Boolean values—$self.isMakingOffer and $self.isSettingRemoteAnswerPending—
are determined elsewhere in the connection logic. You have already seen the

first one: you set $self.isMakingOffer in the handleRtcConnectionNegotiation() callback.

To refresh your memory, here it is again:

demos/basic-p2p/js/main.js

async function handleRtcConnectionNegotiation() {
$self.isMakingOffer = true;
console.log('Attempting to make an offer...');
await $peer.connection.setLocalDescription();
sc.emit('signal', { description: $peer.connection.localDescription });
$self.isMakingOffer = false;

}

The code in that example is the same as what you already wrote, but there’s

something new worth pointing out about it. As we saw in Establishing the

Polite Peer, on page 45, the first peer triggers the connected peer event before

the second peer joins the call. Similarly, the first peer will also immediately

send off its initial offer over the signaling channel—again, almost certainly

before the second peer is around to receive it. But on the outside chance the

second peer does receive the first peer’s offer, that would likely happen before

the second peer generates its own offer—meaning there wouldn’t be a collision.

And that’s why it’s smart to set the first-connecting peer as the polite one:

by the time the second peer joins the call, the first is hopelessly awaiting an

answer that will never come. And instead of sending the answer that the first

peer expects, the impolite, second-connected peer fires off an offer of its own.

That’s glare: both sides have offers out, and both sides expect answers that

ordinarily will never come. But because the first peer is polite, it will ditch its

5. https://www.w3.org/TR/webrtc/#rtcsignalingstate-enum

report erratum • discuss

Building Connection Logic to the “Perfect Negotiation” Pattern • 55

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://www.w3.org/TR/webrtc/#rtcsignalingstate-enum
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

own initial offer (a process called rollback) and immediately respond to the

second peer’s offer with an answer. Let’s write the code for that next.

Handling Offer and Answer Descriptions

If $self isn’t ignoring offers, it has no choice but to respond. Add this code to

the bottom of the if (description){ } block inside of the handleScSignal() callback:

// inside the handleScSignal() function definition
if (description) {

// snip, snip

if ($self.isIgnoringOffer) {
return;

}
$self.isSettingRemoteAnswerPending = description.type === 'answer';➤

await $peer.connection.setRemoteDescription(description);➤

$self.isSettingRemoteAnswerPending = false;➤

}

That’s the code that sets $self.isSettingRemoteAnswerPending to true, for use in deter-

mining whether ready_for_offer is true or false. It’s only set to true when the descrip-
tion.type is 'answer'. The description received, whether an offer or an answer, then

gets passed into the setRemoteDescription() method on the RTCPeerConnection object.

That’s how incoming offers (and answers) are handled. The setRemoteDescription()
method is async, so it’s necessary to await its completion. Once the remote

description has been set, $self.isSettingRemoteAnswerPending gets assigned back to

false, assuming it was set to true to begin with.

Below that, let’s add one final block to the description-handling logic. When

an incoming description is an offer, not an answer, it’s necessary to respond

with the answer the remote peer expects:

// inside the handleScSignal() function definition
if (description) {

// snip

if (description.type === 'offer') {
await $peer.connection.setLocalDescription();
sc.emit('signal', { description: $peer.connection.localDescription });

}
}

This little block of code checks to see if the description is an offer. The received

description will have already been added to setRemoteDescription() on the lines

above, so this call to setLocalDescription() responds behind the scenes to whatever

was passed into setRemoteDescription(). After setLocalDescription() has done its work,

Chapter 3. Establishing a Peer-to-Peer Connection • 56

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the resulting description—an answer—gets passed back over the signaling

channel, care of the localDescription property on the peer connection object.

Putting it all together, the perfect-negotiation logic for handling incoming

descriptions now looks like this:

demos/basic-p2p/js/main.js

async function handleScSignal({ description, candidate }) {
if (description) {

const ready_for_offer =
!$self.isMakingOffer &&
($peer.connection.signalingState === 'stable'

|| $self.isSettingRemoteAnswerPending);

const offer_collision =
description.type === 'offer' && !ready_for_offer;

$self.isIgnoringOffer = !$self.isPolite && offer_collision;

if ($self.isIgnoringOffer) {
return;

}

$self.isSettingRemoteAnswerPending = description.type === 'answer';
await $peer.connection.setRemoteDescription(description);
$self.isSettingRemoteAnswerPending = false;

if (description.type === 'offer') {
await $peer.connection.setLocalDescription();
sc.emit('signal', { description: $peer.connection.localDescription });

}
} else if (candidate) {

}
}

That’s a lot of complex code you’ve written. The good news is that it’s also

completely portable: you can basically reuse this in any WebRTC app, inde-

pendent of any other application logic you find yourself writing. You’ll improve

upon it and use it across all the other apps you build in this book. With

incoming offers and answers now handled, let’s finish the job and handle

the incoming ICE candidates.

Handling Incoming ICE Candidates

Handling the ICE candidates received over the signaling channel is compara-

tively less complicated than handling descriptions, but ICE candidates still

provide some interesting twists for our perfect-negotiation logic. Here’s the

complete else if (candidate) logic:

report erratum • discuss

Building Connection Logic to the “Perfect Negotiation” Pattern • 57

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/basic-p2p/js/main.js

} else if (candidate) {

// Handle ICE candidates
try {
await $peer.connection.addIceCandidate(candidate);

} catch(e) {
// Log error unless $self is ignoring offers
// and candidate is not an empty string
if (!$self.isIgnoringOffer && candidate.candidate.length > 1) {

console.error('Unable to add ICE candidate for peer:', e);
}

}

}
}

This code uses a try/catch statement: whenever a candidate comes across

it, we try passing it to the addIceCandidate method on the peer connection

instance. That’s an asynchronous operation, so it’s necessary to call await on

it. If the attempt at adding the ICE candidate throws an error, the error gets

passed along as the e (error) argument to the catch block.

Inside the catch block, there’s a little bit of protective logic for determining

when to log errors returned from addIceCandidate. First, we see a return of the

$self.isIgnoringOffer state property, this time with a negating ! in front of it. Saying

“not” aloud again works here: If we’re not ignoring offers…. There’s no value

to logging ICE candidate errors if $self is ignoring offers, because in that state

$self can harmlessly ignore errors on ICE candidates, too.

In addition to checking the state of $self.isIgnoringOffer, the if statement also tests

the length property on the candidate string to make sure it’s greater than one.

Some browsers burp up empty ICE candidates as a single space when they

have no more candidates left to offer. The empty candidate functions as an

“end-of-candidates” indicator.6 In browsers with modern WebRTC implemen-

tations, empty candidates are expected. But some older browsers will complain

and throw an error from addIceCandidate() over an empty ICE candidate. Empty

candidates don’t prevent older browsers from establishing a connection, so

there’s no need for us to listen to their complaints about them.

Putting the error-logging logic all together in quick summary: if $self isn’t

ignoring offers and the candidate.candidate value isn’t an empty string or a space,

we log out the error to console.error().

6. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate

Chapter 3. Establishing a Peer-to-Peer Connection • 58

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/addIceCandidate
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

And that, I’m delighted to tell you, is that. All of your WebRTC connection-

negotiation logic is in place. Let’s write one more short piece of code, and

you’ll be able to test your work out in full.

Receiving Media Tracks

Recall that we set up logic to attach media tracks to the call in Sending Media

Tracks, on page 49. On the receiving side, we need logic that’s going to listen

for the remote peer’s media coming in over the WebRTC connection and then

set the peer <video>’s srcObject to the incoming stream. To do this, find the

skeletal handleRtcPeerTrack() callback function you defined earlier and put some

flesh on its bones:

demos/basic-p2p/js/main.js

function handleRtcPeerTrack({ track, streams: [stream] }) {
console.log('Attempt to display media from peer...');
displayStream(stream, '#peer');

}

Once more we see destructuring assignment at work: this time, it pulls out

the returned track and stream from the event object returned by onaddtrack.
To display the incoming stream, we reuse the displayStream() function we built

earlier in Requesting User-Media Permissions, on page 37. Only this time, we

pass in the peer’s media stream coming in over the WebRTC connection and

select the #peer video element to display it.

Avoid the Unmute Event

You’ll often see WebRTC tutorials that add a callback to the unmute event when handling

an incoming track.a

Code that waits for the unmute event to fire on a track will not display video until there

are video frames streaming in from the peer. That can be frustrating in development,

so I prefer to allow the empty frames from a video source to display immediately.

Additionally, unmute was not properly supported in Safari until version 11—meaning

that users running older versions of Safari would never see any video at all, as the

unmute event would never fire.

a. https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/unmute_event

In a more sophisticated streaming-media setup, we might manage individual

media tracks and add them to a custom peer MediaStream object, like we did

for self in the requestUserMedia() code on page 41. (In fact, that’s exactly the

sophisticated streaming-media setup we’ll build later in the book, in Adding

report erratum • discuss

Receiving Media Tracks • 59

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/unmute_event
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Mic and Camera Toggles, on page 98.) But working with the stream is perfectly

acceptable for now. There’s only the one video track to this stream anyway.

Testing Out Your First Peer-to-Peer App

Now it’s time to test it all out. Reduce the size of the browser window you’ve

been working in so there’s room to open a second just like it. Be sure to copy

and paste the URL from the first window into the second, so you’re communi-

cating over the same namespace on the signaling channel. Refresh both windows,

grant permissions for the camera, and then hit Join Call in one window, then

the other. Then get ready to see a whole lot of your own face on the screen.

If things aren’t working, don’t lose heart. Check your console for any errors

and messages, including the ones from the calls to console.log that you sprinkled

in along your journey through this chapter. You might also want to check

your work against the completed example in the demos/basic-p2p/ directory.

Leaving and Rejoining a Call

One more task and this basic app will be feature-complete. We need to make

it so the Leave Call button works as advertised for peers who want to leave.

The peer remaining on the call must also know what to do when the other

peer leaves—especially in the event that the leaving peer rejoins the call.

Chapter 3. Establishing a Peer-to-Peer Connection • 60

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

To manage the steps for tearing down the call, let’s create a function called

resetPeer() right below establishCallFeatures(). The resetPeer() function should set the

incoming peer’s video stream to null (without that, the last frame received

would continue to display someone’s face frozen in an unflattering grimace

for the rest of time) as well as close the existing peer connection:

demos/basic-p2p/js/main.js

/**
* Call Features & Reset Functions
*/

function establishCallFeatures(peer) {
registerRtcCallbacks(peer);
addStreamingMedia($self.mediaStream, peer);

}

function resetPeer(peer) {➤

displayStream(null, '#peer');➤

peer.connection.close();➤

peer.connection = new RTCPeerConnection($self.rtcConfig);➤

}➤

Calling the close() method on the peer connection instance, peer.connection, tells

the browser that that instance is no longer in use. (Closing the peer connection

happens in addition to closing the signaling channel at the top of the leaveCall()
function, which you wrote earlier—we will return to it in a moment.) And

then in a move of pure optimism, the last line of resetPeer() initializes a new

RTCPeerConnection object in case the leaving peer decides to rejoin the call. That’s

why we named the function resetPeer(), rather than something ominous and

destructive like obliteratePeer().

We need to call resetPeer() in two different places. Start with the leaving peer,

who clicks the Leave Call button. Open up the leaveCall() function, and add the

following line:

demos/basic-p2p/js/main.js

function leaveCall() {
sc.close();
resetPeer($peer);➤

}

When the remote peer leaves, the remaining peer needs to know about it,

and be told what to do, too. You could write some heavy-duty logic for the

remaining peer to detect a closing RTCPeerConnection, but you already have an

empty handleScDisconnectedPeer() callback function in place to handle the signaling

channel’s disconnected peer event. The logic is already there and triggered by the

Leave Call button. A dropped network connection on either side of the call

will also trigger the disconnected peer event, which makes tying the reset logic

report erratum • discuss

Testing Out Your First Peer-to-Peer App • 61

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

to the signaling channel a robust choice. So let’s build out the handleScDiscon-
nectedPeer() callback:

demos/basic-p2p/js/main.js

function handleScDisconnectedPeer() {
resetPeer($peer);➤

establishCallFeatures($peer);➤

}

As we did inside of leaveCall(), we call the resetPeer() function from within the

handleScDisconnectedPeer() callback, where we also call the establishCallFeatures()
function. Note that we didn’t have to reestablish the call features for the

leaving peer: rejoining the call by clicking the Join Call button will register

the callbacks and add the media, care of establishCallFeatures() on the signaling

channel’s connect event, like when the peer joined the call initially. But for a

peer remaining on the call, we quietly call establishCallFeatures() so that there is

no need for the remaining peer to click Leave Call and then Join Call again.

One more time, refresh both of your browser windows. Try leaving and rejoining

the call from either window. You can even leave the call from both windows,

and then rejoin. Everything should be working as expected on both ends of

the call when one or both peers decide to leave—and come back.

Next Steps

With all of this working, congratulate yourself. This is a huge feat, and you’ve

now mastered all of the fundamental techniques for establishing, tearing

down, and resetting peer-to-peer connections with WebRTC. You’re streaming

live video like a pro. As cool as that is, you can stream more than audio and

video over a peer-to-peer connection. In the next chapter, you will open up

and manage pipelines for streaming application data over the RTCDataChannel
interface.

Chapter 3. Establishing a Peer-to-Peer Connection • 62

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/basic-p2p/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 4

Handling Data Channels

Over the last two chapters, you built the essential core of all WebRTC appli-

cations: you connected to a signaling server and established a peer connection

according to the perfect-negotiation pattern. You also successfully implemented

WebRTC’s most famous feature, which is the ability to stream user media

from one peer to another in real time.

But streaming media is only one facet of WebRTC’s capabilities. WebRTC

connections can also stream any application data you like, directly from one

peer to another, over the RTCDataChannel interface. This chapter picks up right

where you left off and will have you adding a couple of features to your video-

call app for streaming application data, too.

The first feature you’ll build will enable your users to set filters on their videos.

For example, users will be able to set it so that their video streams display

in black and white, instead of the normal color coming off of their cameras.

We’ll use a data channel to tell the remote peer to set the same filter as the

local peer selects. The video-filter feature will help you familiarize yourself

with an asymmetric method for adding data channels to a call, and the events

that data channels fire as they are added, opened, and closed.

We’ll follow that up with a second, more involved feature backed by data

channels: a chat box that will give users the ability to send text messages to

each other. In setting up the chat feature, we’ll employ a symmetric method

for adding data channels to a call and look more closely at how data is sent

and received over WebRTC data channels.

In this chapter, we’ll be sending data in the form of simple strings, which is

enough to build these two features. You’ll extend your skills to stream more

sophisticated forms of data in Chapter 5, Streaming Complex Data, on page 93.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Adding Basic Visual Effects to User Videos

Let’s get down to work, and do something fun and lightweight with data

channels to trick out the streaming videos: we’ll enable users to apply one of

a small set of visual-effects filters to their video streams, and have that same

filter applied to their stream on the remote peer’s side of the call.

We’re going to squeeze as much as we can out of very little data. Sometimes

all that’s needed to complete a task is to share only the tiniest bit of informa-

tion. People like me who grew up in the age just before cell phones relied on

all sorts of clever hacks to avoid paying for phone calls, including from pay

phones. One of the most famous of those hacks was to use a pay phone to

make a collect call home for Mom or Dad to come and pick you up from

somewhere. When the automated operator would prompt you for your name,

you instead said your message as fast as you could: “Mall! Pick me up!” And

then when your parents got the call, they declined the charges but still got

the recorded message. It was a simpler time. I have a friend who worked in

college as a DJ on local radio, and he loves to talk about how prisoners at

the nearby jail would use that same trick, breathlessly saying, “Play the new

Soundgarden” in collect calls to the station.

Nostalgia aside, the first thing we’ll do with data channels is modeled on the

collect call hack. We’re going to write a little bit of CSS that uses the filter
property to build a set of visual effects to apply to the HTML elements display-

ing the video streams. We won’t be adding any new interface components for

this, like a button for choosing filters. Instead, we’ll build an unadvertised

feature: curious or even just bored users who click their own video elements

will discover that they can cycle through the set of filters we provide them.

We’ll use a data channel to let the remote peer know to apply the same filter

to the incoming user’s stream. And then, like a parent-chauffeur or a radio

DJ receiving a collect call, the remote peer will just hang up. Technically, we

won’t be streaming any data for this feature—we’ll let the label for the data

channel do all of the work.

Duplicating the Peer-to-Peer Example

You’re welcome to keep working in last chapter’s basic-p2p/ directory, but I’m going to

duplicate that code into a new directory, dc-filters/, to keep my work organized. I do the

same for other examples. If you keep working in basic-p2p/, make sure you use that

path in your development browser’s URLs, and not https://localhost:3000/dc-filters/ like I will.

Chapter 4. Handling Data Channels • 64

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Building Video Filters in CSS

The CSS filter property1 will help keep this nice and simple. We will set up

styles that describe four filters: grayscale, sepia, noir, and psychedelic. You

can add these to your CSS file:

demos/dc-filters/css/screen.css

/* Video Effects */

.filter-grayscale {
filter: grayscale(100%);

}
.filter-sepia {

filter: sepia(100%);
}
.filter-noir {

filter: grayscale(100%) contrast(300%) brightness(60%);
}
.filter-psychedelic {

filter: hue-rotate(180deg) saturate(400%) contrast(200%);
}

If you want to test the filters before you write any JavaScript, add one of the

classes by hand to your HTML, on the #self video element, like <video id="self"
class="filter-sepia">, and refresh your browser. As always, make sure that you

have disabled caching in your browser’s developer console so you get the

latest copy of your CSS file. And don’t forget to remove the class you manually

added to the HTML once you’ve tested it out.

Cycling Through and Applying the Filters Locally

We need to build an array of filters in JavaScript that matches the CSS class

selectors, and cycle through them. One way to cycle through an array in

JavaScript while also avoiding global variables is to create a class. Classes

are easier than ever to write in JavaScript with the class keyword, which is

supported in all browsers that support WebRTC. If you decide to go even

wilder with video effects later, you’ll have their foundations all neatly encap-

sulated in this class.

One thing to note about JavaScript class declarations is they aren’t hoisted

the way function declarations are. That means any class declarations must be

written near the top of your JavaScript file, before you reference them. You

might find it useful to declare classes using the variable-assignment syntax

(const VideoFX = class {}, rather than class VideoFX {}) to remind yourself of that:

1. https://developer.mozilla.org/en-US/docs/Web/CSS/filter

report erratum • discuss

Adding Basic Visual Effects to User Videos • 65

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/CSS/filter
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-filters/js/main.js

/**
* Classes
*/

const VideoFX = class {
constructor() {
this.filters = ['grayscale', 'sepia', 'noir', 'psychedelic', 'none'];

}
cycleFilter() {

const filter = this.filters.shift();
this.filters.push(filter);
return filter;

}
};

In the constructor(), we set an instance property—this.filters—to hold an array of

the filters to match the ones described in the CSS. A none filter will return the

video to a filterless state, because there’s no equivalent class selector with

that name in the CSS. For brevity’s sake, the array members don’t include

the filter- prefix used in the CSS. We’ll add that elsewhere.

The VideoFX class includes just a single method, cycleFilter(), which uses the

array shift() method to grab the filter from the front of the array and the push()
method to then stick that filter onto the end of the array. That’s how users

will cycle through all the filters in a never-ending loop. The cycleFilter() method

also returns the shifted array element, which we’ll use in a moment to set a

class in the HTML and apply the video effect.

With the class written, we can assign an instance of it to a filters property on

the $self object:

demos/dc-filters/js/main.js

/**
* User-Media Setup
*/

requestUserMedia($self.mediaConstraints);

$self.filters = new VideoFX();➤

Great. Now let’s write a little more JavaScript to use $self.filters when the self

video element is clicked. An anonymous function is fine for now—we’ll turn

it into a named callback shortly:

document.querySelector('#self')
.addEventListener('click', function(event) {
const filter = `filter-${$self.filters.cycleFilter()}`;
e.target.className = filter;

});

Chapter 4. Handling Data Channels • 66

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

All that does is listen for click events on the self video, and then apply the filter-
prefixed class name to the video. But the effect is pretty satisfying. Here is

the noir filter applied:

Preparing to Apply the Video Filters Remotely

With that code in place, both peers can set filters on their own videos. The

next step is to instruct the remote peer to apply the same filter to the incoming

stream. The actual video stream is unaffected; we’re applying CSS filters to

the video elements on both sides of the call. We’ll make use of the RTCDataChannel
API to accomplish that and see again how WebRTC knits together the states

and behavior of remote interfaces: data channels can be more than a conduit

for data.

Opening a data channel on a peer connection can be more time- and state-

sensitive than adding streaming media. Recall how in Sending Media Tracks,

on page 49, we attached the streaming-media tracks to the connection by

calling the establishCallFeatures() function in the handleScConnect() callback:

demos/dc-filters/js/main.js

function handleScConnect() {
console.log('Successfully connected to the signaling server!');
establishCallFeatures($peer);

}

report erratum • discuss

Adding Basic Visual Effects to User Videos • 67

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Once the peer connection is negotiated and established, the video and audio

begin streaming almost immediately. Users know to wait until they can see

or hear the remote peer before they begin speaking. As developers, we don’t

have to worry about the content of audio or video streams that simply aren’t

received by the remote peer before the connection is established.

That’s not always the case with data channels. It’s sometimes better to ensure the

peer connection is established before activating any user-interface elements

that allow users to interact with each other over data channels. For the video-

filter feature, that means not enabling users to set filters until the other peer

is connected.

Determining Peer-Connection States

The RTCPeerConnection interface provides two features that simplify working with

peer-connection states: an onconnectionstatechange property for attaching a call-

back function, and a connectionState property for determining what state the

connection is in. (Note the WebRTC connectionState differs from the signalingState
that appeared as part of the the perfect-negotiation code in the last chapter

on page 55).

You can define a handleRtcConnectionStateChange() callback function, right alongside

the other peer-connection callbacks you’ve already written. To start, write a

call to console.log to get a sense of how the connection state changes as a call

is established. A local connection_state variable will make it easier to reference

the connection state multiple times over the life of the function:

demos/dc-filters/js/main.js

function handleRtcConnectionStateChange() {
const connection_state = $peer.connection.connectionState;
console.log(`The connection state is now ${connection_state}`);

}

Be sure to register the callback inside of your registerRtcCallbacks function, too:

demos/dc-filters/js/main.js

function registerRtcCallbacks(peer) {
peer.connection.onconnectionstatechange = handleRtcConnectionStateChange;➤

peer.connection.onnegotiationneeded = handleRtcConnectionNegotiation;
peer.connection.onicecandidate = handleRtcIceCandidate;
peer.connection.ontrack = handleRtcPeerTrack;

}

On each connection-state change, the handleRtcConnectionStateChange() function

will log to the console one of six possible states defined in the low-level

RTCPeerConnectionState enumerable: new, connecting, connected, disconnected, failed, and

Chapter 4. Handling Data Channels • 68

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

closed.2 We can use descendent selectors in CSS to apply styles based on the

connection state, so let’s also set a utility class on the <body> element that

will always reflect the current connection state:

demos/dc-filters/js/main.js

function handleRtcConnectionStateChange() {
const connection_state = $peer.connection.connectionState;
console.log(`The connection state is now ${connection_state}`);
document.querySelector('body').className = connection_state;➤

}

With only that code in place, reload your app in both browser windows. Make

sure you’ve got the console visible. Then join the call, and see what the console

reports.

Template Literals

You might have noticed a different style of demarcating strings in this chapter’s

examples. Instead of using the familiar single or double quotes, template literals are

wrapped in backticks, `like this`.

One of the powerhouse features that comes with template literals (sometimes also

called template strings) is expression interpolation. Within a template literal, you can

write any JavaScript expression you like, and the evaluated expression’s string rep-

resentation will become part of the string. The result is syntax that is more readable

than the string concatenation that’s long been used in JavaScript:

// concatenation:
console.log('The area of the square is ' + 5 * 5 + ' meters');
// interpolation:
console.log(`The area of the square is ${5 * 5} meters`);

Any JavaScript expression, including variables, is permissible inside the ${} place-

holder. All browsers with modern WebRTC implementations also support template

literals.a

a. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals

Loading adapter.js

If you’re running an up-to-date version of Chrome or Firefox, you’ll see mes-

sages in the console that the connection state is connecting and then connected.
If you’re using or testing an older version of Firefox, you will see that the

connection is undefined. That will put an undefined state class on <body>, too. As

2. https://www.w3.org/TR/webrtc/#rtcpeerconnectionstate-enum

report erratum • discuss

Determining Peer-Connection States • 69

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Template_literals
https://www.w3.org/TR/webrtc/#rtcpeerconnectionstate-enum
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

good as Firefox’s implementation of WebRTC is, the connectionState property

was missing prior to version 113.3

So here comes a small compatibility enhancement for browsers that need it.

It’s a simple one: we’re going to load up a separate JavaScript file called

adapter.js4 that patches and polyfills certain parts of the RTCPeerConnection inter-

face, including a missing connectionState property that can help us determine

when it’s safe to begin attaching and working with asymmetric data channels.

Even if you’ve been hacking on the latest browsers, be sure to add this for

the sake of older ones. Open up your HTML file, and add this <script> tag just

before the one that loads your main.js file:

demos/dc-filters/index.html

<script src="/socket.io/socket.io.js"></script>
<script➤

src="https://webrtchacks.github.io/adapter/adapter-latest.js"></script>➤

<script src="js/main.js"></script>

Note well the URL for the script. An outdated version of adapter.js hosted under

an old GitHub account is often referenced on even current examples on the

web. You want to make sure you’re loading the one hosted by the webrtcHacks
GitHub account, as in the example above. You can find instructions for serving

your own copy of adapter.js, but you’ll prefer the simplicity of loading up a hosted

copy of adapter-latest.js. Let someone else worry about keeping it up to date.

With adapter.js in place, reload your app. Just like Chrome, older versions of

Firefox should now report the connection state, not undefined. If you want to

see the initial connection state, new, make a similar call to console.log on the line

below where you assigned new RTCPeerConnection() to the connection property on

$peer. The browser will announce right away that the connection state is new.

Using the Connection-State Class

With the connection state correctly reporting in the console, you can now

return to the state class on the <body> element and put it to work in your

CSS. Recall that the video-effects feature is unadvertised. Let’s give users

with pointer devices a little clue about it by changing the cursor to a button/

link-style pointer when hovering over the #self video:

demos/dc-filters/css/screen.css

.connected #self {
cursor: pointer;

}

3. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/connectionState
4. https://github.com/webrtcHacks/adapter

Chapter 4. Handling Data Channels • 70

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/index.html
http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/connectionState
https://github.com/webrtcHacks/adapter
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That little .connected #self descendent selector ensures that the pointer-style

cursor only appears when the peer connection is in a connected state. Refresh

both of your browser windows and test it out. Make sure, too, that you’ve

activated the window you’re checking, because your operating system might

only display the default arrow cursor otherwise.

Applying Filters Remotely with Data Channels

Having made that detour to improve the WebRTC code with adapter.js, let’s get

back to work on the goal of applying video filters remotely. Take the anony-

mous click-event handler you wrote earlier and rewrite it as a handleSelfVideo()
callback. Start by immediately exiting the callback function when the peer

connection state is anything other than connected:

demos/dc-filters/js/main.js

document.querySelector('#self')
.addEventListener('click', handleSelfVideo);

function handleSelfVideo(event) {
if ($peer.connection.connectionState !== 'connected') return;➤

const filter = `filter-${$self.filters.cycleFilter()}`;
event.target.className = filter;

}

Now the click event won’t apply any filters to the self video until after the

connection is established and reporting a connected state.

You’re now set up to build data-channel logic into the handleSelfVideo() callback.

You’ll do that by calling the createDataChannel() method on the peer connection,

passing in the value of the filter variable as the channel’s label.5 A label is

nothing more than a string to identify the channel by name, as you’ll read

about in Uniquely Identifying Data Channels, on page 73. As a diagnostic,

you can also listen for the onclose event on the data channel and log a message

to the console when the peer closes it:

demos/dc-filters/js/main.js

function handleSelfVideo(event) {
if ($peer.connection.connectionState !== 'connected') return;
const filter = `filter-${$self.filters.cycleFilter()}`;
const fdc = $peer.connection.createDataChannel(filter);➤

fdc.onclose = function() {➤

console.log(`Remote peer has closed the ${filter} data channel`);➤

};➤

event.target.className = filter;
}

5. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createDataChannel

report erratum • discuss

Applying Filters Remotely with Data Channels • 71

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/createDataChannel
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The label for the data channel that opens—something like filter-noir—determines

the filter that’ll be set for the incoming video stream on the remote peer’s side

of the call. We’re not even really sending any data here. It’s just metadata—

data channel’s label—that the remote peer will use to set a class on the

incoming peer’s video element. All that’s missing is logic to listen for incoming

data-channel events.

Listening for the Filter Data Channel on the Remote Peer

First, let’s review what we’ve done so far: we’ve built an event listener that

registers click events on the self video. Each time the video is clicked, if the

peer connection is in a connected state, the active filter changes and gets applied

to the local peer’s self video. The local peer also opens a data channel with

the name of the filter. The final step, then, is to listen for data channel events

and respond to them.

You’ll do that by creating another RTC connection callback function and

attaching it to the peer connection’s ondatachannel property. The datachannel event

will fire any time a data channel is added to the connection. Because an app

can open multiple data channels for handling different tasks, it’s often neces-

sary to do some checks on the data channel’s label value, and trigger the

appropriate action based on the label. Here, the startsWith string method works

nicely to check for filter-related data channels:6

demos/dc-filters/js/main.js

function registerRtcCallbacks(peer) {
peer.connection.onconnectionstatechange = handleRtcConnectionStateChange;
peer.connection.ondatachannel = handleRtcDataChannel;➤

peer.connection.onnegotiationneeded = handleRtcConnectionNegotiation;
peer.connection.onicecandidate = handleRtcIceCandidate;
peer.connection.ontrack = handleRtcPeerTrack;

}

function handleRtcDataChannel({ channel }) {
const label = channel.label;
console.log(`Data channel added for ${label}`);
if (label.startsWith('filter-')) {
document.querySelector('#peer').className = label;

}
}

Note how destructuring assignment is lifting the channel object off of the

returned event object, giving us a local channel variable within the function. Any

time a data channel opens with a label that starts with filter-, we set the label as

6. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith

Chapter 4. Handling Data Channels • 72

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String/startsWith
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the class name on the peer video element. Once that happens, the local peer’s

self video and the remote peer’s incoming video will have the same filter applied.

That code will work as expected, but as curious users cycle through the vari-

ous filters, a whole bunch of data channels will be left attached to the call

with nothing to do. They’ll almost certainly get into some kind of mischief.

So let’s do a little cleanup and, like parents receiving a collect call from their

stranded kids, wait for the incoming data channel’s onopen event to fire, at

which point we’ll hang up by closing it:

demos/dc-filters/js/main.js

function handleRtcDataChannel({ channel }) {
const label = channel.label;
console.log(`Data channel added for ${label}`);
if (label.startsWith('filter-')) {
document.querySelector('#peer').className = label;
channel.onopen = function() {➤

channel.close();➤

};➤

}
}

With that all wired up, refresh your browser windows and give it a try. As

you cycle through the filters on the self video on one side of the connection, you

should see the same filter applied to the incoming video on the other side. In

the JavaScript console, you’ll see messages like “Remote peer has closed the

filter-grayscale data channel” logged each time you cycle through to a new

filter, confirming each short-lived filter channel has been closed.

Uniquely Identifying Data Channels

Data channels can be opened asymmetrically or symmetrically. For setting video

filters remotely, data channels are opened asymmetrically: the peer wishing to

set a new video filter adds the channel to the call, and the receiving peer listens

for the ondatachannel event. We labeled the data channel by passing in the name

of a filter, like filter-grayscale, to the peer connection’s createDataChannel() method.

Useful as they are, labels do not uniquely identify data channels. It’s the stuff

of debugging nightmares that multiple data channels can end up with the

same label. You can experiment with this by writing a little diagnostic code

and joining a call in two browser windows. First, open up an else statement

in the handleRtcDataChannel callback:

} else {
console.log(`Opened ${channel.label} channel with an ID of ${channel.id}`);

}

report erratum • discuss

Uniquely Identifying Data Channels • 73

http://media.pragprog.com/titles/ksrtc/code/demos/dc-filters/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Refresh the pages in both of your browser windows and join the call. Run

$peer.connection.createDataChannel('experiment').id in each window’s console. The labels

will be the same, but you’ll see different numbers returned in each window.

For example, just now I got an id of 3 in one console, and an id of 2 in another.

Even though the label, experiment, was exactly the same, the id values differ.

And the id value is what actually uniquely identifies a data channel.

For that reason, an asymmetric channel must only ever be opened by one

peer—even if both peers are allowed to send data over it. (That’s not a great

idea for asymmetric channels, because you then need to write logic to ensure

both peers can’t open the channel simultaneously.) The other peer will listen

for the channel to be opened, and then preserve a reference to the channel

in a variable—just as you’ve done for the data channels that handle filters.

Asymmetric channels are excellent choices for data channels that are either

short-lived or that only handle data sent by a peer on one side of the call,

which again is the case for the video-filter channels.

Opening Symmetric Data Channels

Asymmetric data channels aren’t the only game in WebRTC town, though.

Data channels can also be opened symmetrically, which is a better option for

channels that permit both peers to send and receive data. The RTCDataChannel
interface refers to symmetric data channels as negotiated. To create a negoti-

ated data channel, we have to pass in a label as well as an options object to

createDataChannel(). At a minimum, the options object includes two values. First,

it must set a negotiated property to true. And second, it must specify a unique

id for the data channel. Try running this code to create a negotiated data

channel (ndc) in the consoles of two connected browsers:

const ndc = $peer.connection
.createDataChannel('negotiated', { negotiated: true, id: 100 });

console.log(`Label: ${ ndc.label }, ID: ${ ndc.id }`);

Both browsers will report a data channel with a negotiated label and an ID of

100. But importantly, you will not see a logged message of Opened negotiated
channel with an ID of 100. That’s because negotiated or symmetric data channels

do not fire the ondatachannel event. The negotiated: true option means that both

sides of a call are expected to add the same data channel independently. This

is exactly what we will do to set up the data channel for supporting a text

chat in the call: because both users can send data over it, and because we

don’t want to have to write a ton of logic to manage an edge case where both

users might open the channel simultaneously, a negotiated, symmetric data

channel is the better choice.

Chapter 4. Handling Data Channels • 74

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

ID Values for Data Channels

The WebRTC specification notes that the value of a data channel ID is an “unsigned

short.”a If you’re struggling to remember that day in kindergarten class when you

learned about maximum values of unsigned short integers, it’s usually around 65,535

or 215-1. However, after testing this extensively across Firefox and Chrome, I can

report that you’ll want to set your IDs well under 1000. 500, to be safe. And there’s

nothing at all wrong with assigning IDs in the single digits. My preference is to assign

negotiated data-channel IDs starting at 100. That helps me with debugging when

there are lots of data channels in play: if I have an ID that is 100 or above, I know

that I am dealing with a negotiated data channel.

Asymmetrically added data channels will be opened with the lowest ID value the

browser has available. In the case of peers opening more than one channel simulta-

neously, the first peer to add a data channel will increment ID values by odd numbers,

starting with 1 (1, 3, 5, 7...), and the peer that is second will increment by even

numbers, starting with zero (0, 2, 4, 6...). That prevents ID-value collisions from ever

happening on asymmetric data channels. Note that browsers release and can reuse

ID values as soon as the data channels using them have been closed and garbage-

collected, so a given ID value is in no way guaranteed to be unique over the life of a call.

a. https://www.w3.org/TR/webrtc/#dom-rtcdatachannel-id

Adding a Text-Chat Feature

Let’s add a more useful feature to the app: a text chat. Anyone who’s ever

shared a URL in a text chat on a video call already knows how useful text

chats can be, independent of full audio and video capabilities. A text chat

also makes a call more accessible to users who cannot speak or hear, or be

heard, for any reason.

By building a text chat, we’re going to learn how to work with negotiated data

channels. As you read in the last section, the method for adding negotiated chan-

nels to a call differs somewhat from the asymmetric data channels we used for

the video filters. We’ll also learn how to send data over data channels, which

works the same way on symmetric and asymmetric data channels. And to make

for a more robust interface, we’ll add a message-queueing system that enables

users to compose messages whenever they like—even before a call—and the

app will send any queued messages as soon as the data channel opens.

We’ll start things off by quickly building the chat’s interface components as

another example of the tight bond between UI and WebRTC. I’m going to copy

the dc-filters/ directory to one called dc-chat-basic/. You can do the same, if you’d

like, or keep working in whatever directory makes you happiest.

report erratum • discuss

Adding a Text-Chat Feature • 75

https://www.w3.org/TR/webrtc/#dom-rtcdatachannel-id
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Building the Text-Chat Interface

Pull open your HTML file to start. Just below the article element containing

the streaming videos, but still inside of <main>, open up an <aside id="chat">
element for holding the chat-related components: an accessibility-minded

heading, plus an empty ordered list for logging the chat messages and a small

form for composing them. Remember that we’ve got reset CSS in place that

strips numbers off of ordered lists and bullets off of unordered lists, so we

don’t have to worry about numbers appearing. Semantically, an ordered list

makes good sense, because chat messages will be appended to the list in the

order that they are composed and received:

demos/dc-chat-basic/index.html

<aside id="chat">
<h2 class="preserve-access">Text Chat</h2>
<ol id="chat-log">

</aside>

Below the empty ordered list, you can create a basic form with three elements:

a <label> associated via the for attribute with an <input> where users can type a

message, and a send <button> for users who prefer to click something instead

of hitting Return to send the message. It’s important to disable autocomplete or

users might be shown an annoying drop-down with all their previous mes-

sages. If you like, you can explicitly set type="submit" on the button element,

even though it’s associated with a <form> and takes that type implicitly:

demos/dc-chat-basic/index.html

<aside id="chat">
<h2 class="preserve-access">Text Chat</h2>
<ol id="chat-log">
<form id="chat-form" action="#null">➤

<label for="chat-msg" class="preserve-access">Compose Message</label>➤

<input type="text" id="chat-msg" name="chat-msg" autocomplete="off" />➤

<button type="submit" id="chat-btn">Send</button>➤

</form>➤

</aside>

We’ll be handling the form’s behavior in JavaScript, of course, and you might

find it useful to include action="#null" on JavaScript-dependent forms as a

reminder of that.

Improving the Chat App’s CSS

Over in the CSS, let’s refine some existing styles and add some new ones. The

goal here is to try and manage the elements on the page—the header and its

button, the videos, and the new chat box—to keep them responsive but also

Chapter 4. Handling Data Channels • 76

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/index.html
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

visible at all times without users needing to scroll away from the video streams.

To achieve that, we’ll use viewport units as well as CSS grid and flexbox.

Setting an exact height, such as 100vh, gives us some vertically responsive

superpowers with CSS grid, which you can set up for both narrow screens

and a larger 680px viewport:

demos/dc-chat-basic/css/screen.css

/* Layout */

* {
box-sizing: border-box;

}
#interface {
height: 100vh;➤

padding: 22px;
display: grid;➤

grid-gap: 11px;➤

grid-template-rows: auto auto 1fr; /* heading videos chatbox */➤

}
#header { /* Can discard this selector; superseded by grid-gap. */ }➤

/* Media Queries */

@media screen and (min-width: 680px) {➤

#interface {➤

grid-template-columns: 1fr 1fr;➤

grid-template-rows: auto 1fr;➤

}➤

#header {➤

grid-column: 1 / 3;➤

}➤

}➤

At the mobile scale, we set three rows: auto for the first two means that the

header and the article element containing the videos should be sized according

to the size of their content. The third row, however, is set to 1fr. That’s the

row the chat box will sit on. The magic of 1fr coupled with a 100vh on the grid

results in a chat box that will always be perfectly sized to occupy whatever

vertical space remains—regardless of how many messages it contains. You can

completely remove the old #header style declaration, because its 11px bottom-

margin is now handled by the 11px value on the grid-gap property.

At the 680px breakpoint, there’s room to introduce a second column, which is

where the chat box will appear. The header occupies its own row, above the

two equally-sized columns containing the videos and chat box, which will

automatically appear in the correct rows and columns without us having to

write any CSS explicitly placing them there.

report erratum • discuss

Adding a Text-Chat Feature • 77

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Because the interface now has to accommodate a chat box, let’s reduce the

overall footprint of the videos. We’ll further shrink the size of the self video

and use CSS positioning so that it overlays the peer video’s top lefthand corner:

demos/dc-chat-basic/css/screen.css

#videos {
position: relative;

}
#self {

width: 30%;➤

position: absolute;➤

top: 11px;➤

left: 11px;➤

z-index: 1000; /* Prevent remote filters from hiding #self */➤

border: 1px solid #CCC;➤

}

The reason for setting a z-index on self is to stave off a rendering bug on any

incoming video filters: in Firefox, for example, once a filter has been applied

to an incoming video, the self video seems to disappear. A high z-index value

on the self video prevents that from happening.

Finally, let’s anticipate callers joining from phones or other devices that might

have portrait-oriented video streams. With the videos now more neatly con-

tained, we’ll change the max-width property to width. This will keep the size of

the video consistent, even if network conditions change. We’ll also set the

CSS aspect-ratio property to 4:3,7 which will always display video boxes in that

aspect ratio. To make sure that video streams always fill the entirety of their

designated boxes, we can set the object-fit property to cover,8 and the object-position
property to center:9

demos/dc-chat-basic/css/screen.css

video {
background-color: #DDD;
display: block;
width: 100%;➤

aspect-ratio: 4 / 3;➤

object-fit: cover;➤

object-position: center;➤

}

7. https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio
8. https://developer.mozilla.org/en-US/docs/Web/CSS/object-fit
9. https://developer.mozilla.org/en-US/docs/Web/CSS/object-position

Chapter 4. Handling Data Channels • 78

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/CSS/aspect-ratio
https://developer.mozilla.org/en-US/docs/Web/CSS/object-fit
https://developer.mozilla.org/en-US/docs/Web/CSS/object-position
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Styling the Chat Box

Let’s add some styles to make an attractive chat box. The form element should be

anchored to the very bottom of the box, and the log of messages should appear

above it. The log of messages should also scroll once there are more messages

than fit in the box. We’ll use CSS flexbox in tandem with the overflow property

to achieve that effect:

demos/dc-chat-basic/css/screen.css

#chat {
height: 100%;
min-height: 220px; /* Accommodate small, squarish screens */
border: 1px solid #999;
padding: 5.5px;

display: flex; /* Use columnar flexbox to constrain log */
flex-direction: column;

font-weight: normal;
}
#chat-log {

flex-grow: 1;
overflow: auto;
padding-bottom: 11px;
margin-bottom: 5.5px;
min-height: 0; /* Firefox fix */

}
#chat-form {
flex-grow: 0;
display: flex;

}

What we’re doing in that CSS is setting up a vertical flexbox (flex-direction: column),
which gains some vertically responsive superpowers in a parent element with

a set height, which your app has, thanks to the CSS grid you set up on the

main element, along with its 100vh height. The vertical flexbox will simply fill

the remaining space of the containing grid line. It does that by placing the chat

form at whatever size its input and button render at before allotting the

remaining space to #chat-log, thanks to flex-grow: 1. As you can see in the CSS

comments, we set min-height: 0 to stave off yet another rendering bug in certain

versions of Firefox.10

By setting overflow: auto, any content that doesn’t fit within the chat-log box

will simply scroll out of view. On larger viewports, the empty box will look

something like the screenshot on page 80.

10. https://medium.com/@stephenbunch/how-to-make-a-scrollable-container-with-dynamic-height-using-flexbox-
5914a26ae336

report erratum • discuss

Adding a Text-Chat Feature • 79

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
https://medium.com/@stephenbunch/how-to-make-a-scrollable-container-with-dynamic-height-using-flexbox-5914a26ae336
https://medium.com/@stephenbunch/how-to-make-a-scrollable-container-with-dynamic-height-using-flexbox-5914a26ae336
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

To finish up, let’s provide styles for the individual chat messages and the chat

form. Here is a chunk of styles to handle how messages are displayed:

demos/dc-chat-basic/css/screen.css

#chat-log li {
border-radius: 5.5px;
padding: 5.5px;
margin-bottom: 5.5px;
max-width: 60%;
clear: both;

}
#chat-log .peer {

background: #EEE;
float: left;

}
#chat-log .self {

background: #009;
color: #EEE;
float: right;

}

That will give the messages the look of a texting app: the peer’s own messages

will hold to the right of the chat log and have a blue background. The

incoming, remote peer’s messages will be gray and hold to the left. Old-school

floats are enough to accomplish that.

And finally, because you set #chat-form to display: flex, it’s its own flex container.

That will make it very easy to allow the chat-message input to grow as needed

to the left of the send button, which will always be the same size—neither

growing nor shrinking:

Chapter 4. Handling Data Channels • 80

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-chat-basic/css/screen.css

#chat-form button {
cursor: pointer;
flex: 0 0 auto;
background: #009;
color: #EEE;

}
#chat-form input {

flex: 1 1 100%;
padding: 9px;
margin-right: 5.5px;
border: 2px solid #999;
outline: 0;

}

That’s it for our work with CSS. With the HTML structures and a responsive

design in place, let’s carry this over the finish line and wire up the data-

channel logic for sending and receiving messages.

Adding Logic to Handle Chat Events

With the user interface in pretty awesome, responsive shape, let’s shift focus

to JavaScript and handle a few important tasks to prepare the chat’s behavior

for use with a data channel. We’ll need to listen for submit events on the form

element and append chat messages to the chat log. And of course we will

need to decide how and when to attach a data channel to the call, and provide

logic for both peers to send and receive messages over it.

Appending Messages to the Chat Log

Messages need to be appended to the chat log when users either send or

receive messages. Let’s define a function that handles both cases. The function

will take a few arguments: the message sender (self or peer), the element for

the chat log, and the message itself. Because we’re appending user input to the

DOM, let’s keep things ultra-safe for now and create text nodes with innerText
to present the messages, rather than worry about sanitizing rogue HTML that

users might try to inject:

demos/dc-chat-basic/js/main.js

function appendMessage(sender, log_element, message) {
const log = document.querySelector(log_element);
const li = document.createElement('li');
li.className = sender;
li.innerText = message;
log.appendChild(li);

}

report erratum • discuss

Adding Logic to Handle Chat Events • 81

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Now we need to listen for submit events on the chat form, and use those to

trigger the appendMessage() function. The handleMessageForm() callback function

must prevent the browser’s default form-submission behavior and also

check that the chat-message box has some content in it. It will then call the

appendMessage() function and set the chat-message box’s input value to an

empty string—readying it for the next message a user composes:

demos/dc-chat-basic/js/main.js

document.querySelector('#chat-form')
.addEventListener('submit', handleMessageForm);

function handleMessageForm(event) {
event.preventDefault();
const input = document.querySelector('#chat-msg');
const message = input.value;
if (message === '') return;

appendMessage('self', '#chat-log', message);

input.value = '';
}

Take a moment to test this out on one side of a call. Try typing some messages

into the chat box. You should see them appended to the chat log above the

form, as in this figure:

Chapter 4. Handling Data Channels • 82

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

But if you type enough messages, you’ll stop seeing them appear in the chat

log, and you’ll have to manually scroll down to find them. What a pain. Let’s

use the scrollTo property to automatically scroll to the bottom of the chat log

on each appended message. For browsers that don’t support scrollTo,11 we’ll

add a fallback that uses old-school scrollTop instead:

demos/dc-chat-basic/js/main.js

function appendMessage(sender, log_element, message) {
const log = document.querySelector(log_element);
const li = document.createElement('li');
li.className = sender;
li.innerText = message;
log.appendChild(li);
if (log.scrollTo) {➤

log.scrollTo({➤

top: log.scrollHeight,➤

behavior: 'smooth',➤

});➤

} else {➤

log.scrollTop = log.scrollHeight;➤

}➤

}

Reload the app and try entering more messages. On browsers that support

the options object on scrollTo, you’ll see the effect of messages appearing to

slide into view at the bottom of the chat log. On all other browsers, the message

will appear—but it won’t require users to do any scrolling. Not bad for a few

lines of CSS and JavaScript.

Setting Up the Text-Chat Data Channel

With all of that in place, we can get down to work on the data-channel logic.

Let’s use a symmetric data channel, meaning that both peers will open the

data channel as part of joining the call:

demos/dc-chat-basic/js/main.js

/**
* User-Media and Data-Channel Functions
*/

function addChatChannel(peer) {
peer.chatChannel =
peer.connection.createDataChannel('text chat',

{ negotiated: true, id: 100 });

11. https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollTo

report erratum • discuss

Setting Up the Text-Chat Data Channel • 83

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/Element/scrollTo
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

peer.chatChannel.onmessage = function(event) {
appendMessage('peer', '#chat-log', event.data);

};

peer.chatChannel.onclose = function() {
console.log('Chat channel closed.');

};
}

Everything here should look at least a little familiar from the video-filters

example: we’re creating a data channel with the createDataChannel() method on

the peer connection and giving it a label, text chat. But we’re also passing in

configuration options declaring that the channel is negotiated and that it will

take an id of 100. We’re also handling onmessage and onclose events, with the

onmessage event calling the appendMessage() function just like the form handler

does. Three cheers for function reuse!

Your last task is to call the addChatChannel() function inside of your establishCallFea-
tures() function:

demos/dc-chat-basic/js/main.js

/**
* Call Features & Reset Functions
*/

function establishCallFeatures(peer) {
registerRtcCallbacks(peer);
addChatChannel(peer);➤

addStreamingMedia($self.mediaStream, peer);
}

Both peers will now set up the chat channel automatically, like they both add

streaming media to the connection. Sweet! Thanks, establishCallFeatures(), for living

up to your name.

Sending Messages over the Text-Chat Data Channel

Prepare to be a tad underwhelmed: to send messages over the chat data-

channel, all we need is one line of JavaScript tucked into the handleMessageForm()
callback. The line uses the data channel’s send() method to transmit the mes-

sage to the remote peer:

function handleMessageForm(event) {
event.preventDefault();
const input = document.querySelector('#chat-msg');
const message = input.value;
if (message === '') return;
appendMessage('self', '#chat-log', message);

Chapter 4. Handling Data Channels • 84

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

$peer.chatChannel.send(message);➤

input.value = '';
}

That’s literally it for the sending logic. The onmessage event you already set up

in addChatChannel() handles the receiving logic, and it too runs the appendMessage()
function, but with the messaging coming in over the data channel, rather

than text in an input element. CSS applies color and position styles to the

self and peer classes, visually distinguishing sent and received messages.

Testing the Text Chat with a Second Device

Let’s test this out. But as a twist, consider using a second device on your

local network for one end of the connection. If you’ve got a spare laptop or an

Android phone running Chrome or Firefox, or an iPhone or iPad running at

least Safari 15.4, give it a try. (If you keep older devices around, have a look

at the fallbacks you’ll need to write in Appendix 1, Connection Negotiation

in Legacy Browsers, on page 225.)

You can’t connect a second device over https://localhost:3000/ or https://127.0.0.1:3000/
on the second device, though. Recall that there are multiple IP addresses

listed when you start the signaling server:

signaling-server: ** Serving from the www/ directory. **
signaling-server:
signaling-server: App available in your browser at:
signaling-server:
signaling-server: -> https://127.0.0.1:3000/
signaling-server: -> https://192.168.1.6:3000/
signaling-server:
signaling-server: Hold CTRL + C to stop the server.
signaling-server:
signaling-server: +0ms

Use that second IP address to reach your app from your other device, using

a URL like https://192.168.1.6:3000/dc-chat-basic/, as with the example IP address

above. And, of course, make sure the namespaces are identical on both your

development machine and other device, too. You can manually set a seven-

digit namespace like #0001111 in the address bar of each browser to make life

easier on yourself. Once you machete your way through the security warnings

you first dealt with in your development browser in Getting Past Browser

Security Warnings, on page 8, you should be able to join the call and send

and receive messages as shown in the screenshot on page 86.

report erratum • discuss

Setting Up the Text-Chat Data Channel • 85

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Building a Message Queue

Joining a call and sending messages works great. But there’s a problem that

you might have already discovered: the way you’ve written the chat feature,

it’s possible for users to compose and attempt to send messages outside of a

connected state. Go ahead and reload one of your browser windows and,

before joining the call, compose and send a message. You’ll see the message

appended in the chat box as though everything’s hunky-dory, but the input

box will not be cleared and your console will report an error like Uncaught
TypeError: can't access property "send", $peer.chatChannel is undefined.

We need to decide what to do when users compose and send messages outside

of a connected call state. While we could do something similar to what we did

with the video filters and test the connectionState property before allowing users

to enter a message in the chat form, let’s attempt a more robust solution and

build a message-queueing system instead.

What the queueing system will do is let users compose and attempt to send

messages independent of the call’s connection state or the data channel’s

own readyState. If the call is connected and the data channel is open, we will

send along the message. But if the call or the data channel is out of service,

maybe because the remote peer dropped out or either peer is experiencing

Chapter 4. Handling Data Channels • 86

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

connectivity problems, we’ll hold onto their messages and queue them up for

sending as soon as the data channel next becomes available.

First, let’s add a messageQueue property to $self and assign it an empty array.

You can do this right in the user-media setup part of your JavaScript file:

demos/dc-chat-basic/js/main.js

/**
* User-Media Setup
*/

requestUserMedia($self.mediaConstraints);

$self.filters = new VideoFX();

$self.messageQueue = [];➤

Then you can write the beginnings of a small queueMessage() function that ini-

tially takes a message argument, and pushes the message onto the end of the

queue. That will result in a queue where the oldest queued message will be

at the beginning of the queue—with the newest message at the end:

function queueMessage(message) {
$self.messageQueue.push(message);

}

Next, let’s write another function that will begin to neatly encapsulate the

logic for queue-backed calls to send() on the data channel. It will take a peer
and message as arguments:

function sendOrQueueMessage(peer, message) {
const chat_channel = peer.chatChannel;
if (!chat_channel || chat_channel.readyState !== 'open') {
queueMessage(message, push);
return;

}
try {
chat_channel.send(message);

} catch(e) {
console.error('Error sending message:', e);
queueMessage(message, push);

}
}

That function starts by checking both the existence and readiness of the

chatChannel data channel, which won’t be set up until the call is joined. The if
statement examines the channel’s readyState—a property available on the

RTCDataChannel interface.12

12. https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel/readyState

report erratum • discuss

Building a Message Queue • 87

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/RTCDataChannel/readyState
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

If the channel does not yet exist, or if the readyState is anything other than

open, the message gets queued and the function exits, care of the return state-

ment. But if the readyState is open, the message gets sent using the data channel

send() method, which appears in a try/catch statement. Should the message fail

to send for any reason, it will be queued for sending later.

Let’s put the sendOrQueueMessage() function to work in the context of the han-
dleMesssageForm() callback:

demos/dc-chat-basic/js/main.js

function handleMessageForm(event) {
event.preventDefault();
const input = document.querySelector('#chat-msg');
const message = input.value;
if (message === '') return;

appendMessage('self', '#chat-log', message);

sendOrQueueMessage($peer, message);➤

input.value = '';
}

If you want, you can test out your new queue-backed logic for sending mes-

sages. At the moment, it will queue any messages composed outside of a

connected state. But because we have yet to write a means to send any queued

messages, they’ll never reach their intended recipient. Let’s fix that.

Sending Queued Messages

Adding messages is only half of a queueing task, of course. We also need to

be able to send any queued messages as soon as a data channel becomes

available. We’ll do that by assigning a callback to the chat channel’s onopen
event. It will be responsible for looping through the queue and sending any

queued messages, beginning with the very first message that was queued:

FIFO, or first in, first out.

That’s a slightly trickier proposition than it sounds, in part because you will

need to empty the queue of any messages that are successfully sent.

The good news is you’ve already written a nice sendOrQueueMessage() function,

which can also be used for sending queued messages. However, you’ll need

to add an argument that determines what happens to a message that’s already

in the queue, but that still cannot be sent, for whatever reason.

Recall your original queueMessage() function:

function queueMessage(message) {
$self.messageQueue.push(message);

}

Chapter 4. Handling Data Channels • 88

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That works well for queueing at the time of composing: more recent messages

are added to the end of the queue. But as we work through a queue of previ-

ously composed messages, any message that still cannot be sent should be

replaced where it came from, at the front of the queue. Otherwise, the mes-

sages appearing on the receiving side will appear all out of order, once they’re

ultimately sent.

To put that line of thinking into code: instead of calling the .push() method on

the array, which would queue the message to the end of the array, we’ll need

to call the .unshift() method instead—which will add it to the beginning.13

Rewrite queueMessage() to take an optional push argument, which defaults to

true. When push is false, the queued message should be placed at the start of

the queue, courtesy of unshift():

demos/dc-chat-basic/js/main.js

function queueMessage(message, push = true) {
if (push) $self.messageQueue.push(message); // queue at the end
else $self.messageQueue.unshift(message); // queue at the start

}

You’ll also need to add the push argument onto your sendOrQueueMessage() func-

tion, too, and pass in push to both queueMessage() calls:

demos/dc-chat-basic/js/main.js

function sendOrQueueMessage(peer, message, push = true) {➤

const chat_channel = peer.chatChannel;
if (!chat_channel || chat_channel.readyState !== 'open') {
queueMessage(message, push);➤

return;
}
try {
chat_channel.send(message);

} catch(e) {
console.error('Error sending message:', e);
queueMessage(message, push);➤

}
}

To finish things up, you can assign an anonymous callback to peer.chatChan-
nel.onopen inside the addChatChannel() function:

demos/dc-chat-basic/js/main.js

function addChatChannel(peer) {
peer.chatChannel =
peer.connection.createDataChannel('text chat',

{ negotiated: true, id: 100 });

13. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift

report erratum • discuss

Building a Message Queue • 89

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-basic/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/unshift
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

peer.chatChannel.onmessage = function(event) {
appendMessage('peer', '#chat-log', event.data);

};

peer.chatChannel.onclose = function() {
console.log('Chat channel closed.');

};

peer.chatChannel.onopen = function() {➤

console.log('Chat channel opened.');➤

while ($self.messageQueue.length > 0 &&➤

peer.chatChannel.readyState === 'open') {➤

console.log('Attempting to send a message from the queue...');➤

// get the message at the front of the queue:➤

let message = $self.messageQueue.shift();➤

sendOrQueueMessage(peer, message, false);➤

}➤

};➤

}

The heart of that callback is the while loop that works through any messages

in the queue. To avoid setting ourselves up for an infinite loop, the while loop

also checks that the chat channel’s readyState is open. No good and a lot of hurt

will come from trying to loop through a message queue if we’re outside a data

channel’s open state: messages will bounce off the queue and back for eternity.

Inside the while loop, we pull the oldest-queued message off of the queue

using the .shift() method.14 The message then gets passed right back into

sendOrQueueMessage(), but this time with push set to false: if it’s not possible to

send the message, it needs to go right back to the front of the queue where

it came from. The next time through the loop, or the next time the open event

fires on the chat channel, we pick up and try to send that same message all

over again.

Reload your browser windows once more. This time, try sending some mes-

sages from one or both sides before joining the call. In the JavaScript console,

type $self.messageQueue.length and check that the returned number matches the

number of messages you see queued in your chat window.

Then, join the call: you should see your queued messages appear on the

other side, in exactly the order you originally wrote them. Awesome. Typing

$self.messageQueue.length in the JavaScript console should return 0, an empty

queue. You can even leave the call, compose more messages, and rejoin. Same

deal: the queued messages will always be sent as soon as possible.

14. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift

Chapter 4. Handling Data Channels • 90

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/shift
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Next Steps

You’ve accomplished and learned a lot in this chapter: you’ve added short-

and long-lived data channels to an RTC peer connection, and learned about

the lifecycles and management of both asymmetric and symmetric data

channels. You’ve also seen how to send basic strings over data channels. On

top of all of that, you’ve learned how to build a robust queueing function to

make it possible to send messages outside of an active peer connection.

In the next chapter, you’ll do even more with data channels, including sending

structured JSON data and binary data for streaming image files, which you’ll

be adding to your chat feature. You will also see how data channels and

streaming media can work together: you’ll be enabling streaming audio for

the first time, with data-channel-backed controls to toggle mics on and off.

Cameras too!

report erratum • discuss

Building a Message Queue • 91

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 5

Streaming Complex Data

Sending simple messages is pretty great: it’s a small but satisfying taste of

what WebRTC data channels enable us to build. Bask in your success for a

moment, and think about all that is happening in your browser at this point:

you’ve built an app that streams video and allows two connected peers to set

and share filters on their videos. You’ve enhanced the app further by providing

the interface and logic for those peers to exchange text messages with each

other, including outside of a connected call, thanks to the message queue

you wrote.

In short, you’re now able to do some pretty fancy things with WebRTC. And

they’re only going to get fancier: in this chapter alone, you will be pushing

the capabilities of data channels even further to exchange more complex data,

including JSON strings and binary data. You’re also going to learn how to

add audio to the video you’ve been streaming. To keep your users happy,

you’ll also be adding buttons to toggle their mics and cameras on and off.

You’ll use your knowledge of JSON and data channels to share mic and

camera state with the other peer on a call.

To prepare the way for all of those tasks, let’s begin by taking a look at

sending and receiving JSON as a way to enrich the chat messages you learned

to send last chapter.

Structuring Chat Messages in JSON

Instead of sending messages as unadorned strings, as we did in the last

chapter, let’s use JSON to structure some metadata with each message sent

over the chat. To start with, the remote peer will use the metadata’s content

to acknowledge each message received. We can even add a little CSS so that,

on the sender’s side, there is a visual difference between messages that have

been received by the remote peer and those that have not.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Preparing and Sending JSON

Sending JSON isn’t much different from sending strings: JSON, or JavaScript

Object Notation, is a fancy kind of string. Let’s rework handleMessageForm() so

that it builds a small object literal on message in place of the message strings

we relied on in the previous chapter. We’ll set up two properties on the message
object: the text of the message, and a timestamp, which uses the Date.now() class

method to generate a Unix timestamp in milliseconds.1 The timestamp will

uniquely identify each sent message:

demos/dc-chat-json/js/main.js

function handleMessageForm(event) {
event.preventDefault();
const input = document.querySelector('#chat-msg');
const message = {};➤

message.text = input.value;➤

message.timestamp = Date.now();➤

if (message.text === '') return;➤

appendMessage('self', '#chat-log', message);

sendOrQueueMessage($peer, message);

input.value = '';
}

If you’re like me, you much prefer working with JavaScript objects directly.

Let’s set up the sendOrQueueMessage() function to make a JSON string out of the

message object at the last possible moment. We’ll do that by calling JSON.stringify()
inside the call to the data channel’s send() method:

demos/dc-chat-json/js/main.js

function sendOrQueueMessage(peer, message, push = true) {
const chat_channel = peer.chatChannel;
if (!chat_channel || chat_channel.readyState !== 'open') {
queueMessage(message, push);
return;

}
try {
chat_channel.send(JSON.stringify(message));➤

} catch(e) {
console.error('Error sending message:', e);
queueMessage(message, push);

}
}

Messages that wind up in the queue will remain as JavaScript objects. That’s

the benefit of stringifying objects within the send() method, even if it makes

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now

Chapter 5. Streaming Complex Data • 94

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/now
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the method call look a bit crowded: an object is only JSON when it’s sent. At

the same time, you can glance at a call like chat_channel.send(JSON.stringify(message))
and know that there’s JSON involved. Best of all, JSON.stringify() relieves you of

the error-prone business of constructing a JSON string yourself by hand.

With handleMessageForm() now handling messages and objects, and sendOrQueueMes-
sage() properly sending messages as JSON, we need to update how messages

are appended to the chat log. Two changes are all we need: referencing mes-
sage.text from the new message object that we’re passing in and preserving a

reference to the Unix timestamp in a data-timestamp attribute.

demos/dc-chat-json/js/main.js

function appendMessage(sender, log_element, message) {
const log = document.querySelector(log_element);
const li = document.createElement('li');
li.className = sender;
li.innerText = message.text;➤

li.dataset.timestamp = message.timestamp;➤

log.appendChild(li);
if (log.scrollTo) {
log.scrollTo({

top: log.scrollHeight,
behavior: 'smooth',

});
} else {
log.scrollTop = log.scrollHeight;

}
}

If you’ve not used data- attributes before,2 they are a super useful feature for

storing out-of-band data in HTML. The HTMLElement.dataset property that you

referenced as li.dataset.timestamp makes it pretty straightforward to read and

write data- attributes using JavaScript too.3

Acknowledging Received Messages

Let’s set up the logic to send a response that acknowledges each message a

peer receives. This will take two steps: first, the receiving peer must parse

the JSON message and check the resulting object for an id attribute. Only

responses will have id attributes—messages have only text and timestamp
attributes. When a message comes in, we create a response object whose id
will take the timestamp value of the incoming message. The response object will

also include its own timestamp, which captures the moment the message

2. https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/data-*
3. https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset

report erratum • discuss

Structuring Chat Messages in JSON • 95

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
https://developer.mozilla.org/en-US/docs/Web/HTML/Global_attributes/data-*
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

was received. Let’s also reference a handleResponse() function that we’ll build

next for—you guessed it!—handling incoming responses:

demos/dc-chat-json/js/main.js

function addChatChannel(peer) {
peer.chatChannel =
peer.connection.createDataChannel('text chat',

{ negotiated: true, id: 100 });

peer.chatChannel.onmessage = function(event) {
const message = JSON.parse(event.data);➤

if (!message.id) {➤

// Prepare a response and append an incoming message➤

const response = {➤

id: message.timestamp,➤

timestamp: Date.now(),➤

};➤

sendOrQueueMessage(peer, response);➤

appendMessage('peer', '#chat-log', message);➤

} else {➤

// Handle an incoming response➤

handleResponse(message);➤

}➤

};

peer.chatChannel.onclose = function() {
console.log('Chat channel closed.');

};

peer.chatChannel.onopen = function() {
console.log('Chat channel opened.');
while ($self.messageQueue.length > 0 &&

peer.chatChannel.readyState === 'open') {
console.log('Attempting to send a message from the queue...');
// get the message at the front of the queue:
let message = $self.messageQueue.shift();
sendOrQueueMessage(peer, message, false);

}
};

}

Should the call or data channel fail in the time it takes to respond, the

sendOrQueueMessage() function steps in and queues the response. Responses will

of course be sent from the queue like any other message, as soon as the data

channel opens again. Pretty snazzy, right?

Now you can turn your attention to building out the handleResponse() function.

What it will do is use document.querySelector(), backed by CSS attribute selectors,4

to hunt down in the DOM the exact list item for the appended message that

4. https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors

Chapter 5. Streaming Complex Data • 96

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
https://developer.mozilla.org/en-US/docs/Web/CSS/Attribute_selectors
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the remote peer is acknowledging. That message will take a received class. If

more than a second elapses between the message being composed and the

acknowledgment, the list item also takes a delayed class:

demos/dc-chat-json/js/main.js

function handleResponse(response) {
const sent_item = document

.querySelector(`#chat-log *[data-timestamp="${response.id}"]`);
const classes = ['received'];
if (response.timestamp - response.id > 1000) {
classes.push('delayed');

}
sent_item.classList.add(...classes);

}

If you’ve been quietly irritated by my use of the old-school className property

across all the earlier code, I hope you can now breathe easier with the call to

the modern classList API.5 Note also the use of the fancy spread syntax,6

...classes, to ease passing in the array’s values as a series of comma-separated

arguments like .add() expects. The delayed class is only pushed onto the classes
array if there is more than 1000 milliseconds difference between the time-

stamps for when a message was composed and when it was acknowledged.

Let’s reference and style both the received and delayed classes in CSS:

demos/dc-chat-json/css/screen.css

#chat-log .self {
background: #009;
color: #EEE;
opacity: 0.3;➤

float: right;
}
#chat-log .self.received {➤

opacity: 1;➤

}➤

#chat-log .self.received.delayed {➤

transition: opacity 0.4s;➤

}➤

A user’s sent messages might now appear faded out when appended to the

chat log, thanks to a semi-transparent opacity value. The received class restores

full opacity (opacity: 1.0). For the delayed class, however, let’s add a nice little

touch to the interface: delayed messages will appear to fade up from semi-

transparency to full opacity over a little less than half a second, thanks to

5. https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
6. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax

report erratum • discuss

Structuring Chat Messages in JSON • 97

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-json/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/API/Element/classList
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Spread_syntax
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

the CSS transition property.7 Messages with less than a one-second delay will

appear appended at full opacity. That prevents users from being annoyed

by messages always fading up during a low-latency call—which would make

the message interface feel like molasses. Here you can see acknowledged and

queued messages sent after leaving the call:

Excellent. You’re now sending and receiving JSON over data channels. You’ve

also implemented a simple method for acknowledging messages as a peer

receives them. And thanks to some carefully crafted DOM attributes and CSS,

you’ve seen once more how tight the connection is between WebRTC and

interface design.

Let’s apply that same tightly connected approach to a fundamental feature

of WebRTC applications: giving users the ability to toggle their cameras and

microphones on and off.

Adding Mic and Camera Toggles

So far in your work with WebRTC, you’ve streamed only silent video from one

peer to the other. (Raise your hand if you’ve grown sick and tired of looking

at yourself.) Video has been great for setting up and testing out peer connec-

tions, but no app streaming user media is complete if it can’t stream audio, too.

As you have read in earlier chapters, there are some genuine safety concerns

to consider when you are developing with streaming audio coming off a

7. https://developer.mozilla.org/en-US/docs/Web/CSS/transition

Chapter 5. Streaming Complex Data • 98

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/CSS/transition
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

microphone. The possible feedback is not just unpleasant: in the worst cases,

it could damage your hearing and your audio equipment.

With your knowledge of data channels, you’re now prepared to build logic

and controls to toggle audio on and off. That logic is essential not only for

your safety as a developer, but also for giving your users fuller control over

what media they stream and when.

As you’ll see, data channels can play a central role in the construction of device

toggles and other features that stitch together interfaces over peer-to-peer con-

nections. But before we get into building toggles, we’ll need to refine how your

app requests permission for user media—and in turn, how it manages separate

tracks for audio and video as returned by users’ mics and cameras.

To safely introduce streaming audio into your app, we’ll proceed together in

three stages:

1. We’ll refine and build out some media-related properties on $self and $peer.
As a companion task to that, you’ll rework the requestUserMedia() function

that you built way back in Requesting User-Media Permissions, on page

37 and other track- and stream-related functions.

2. We will add some safety-minded logic for working with audio in develop-

ment. We’ll tie that logic to a set of buttons that users can click to turn

their mics and cameras on and off.

3. We’ll build some new data-channel functionality for sharing call features

with the remote peer. Specifically, you’ll alert the remote peer whenever

the local peer toggles the camera or mic on or off.

That list represents some intricate work and your first real taste of rewriting

some WebRTC code you’ve written in earlier chapters, but I think you’ll enjoy

yourself. Let’s find out.

Refining the Initial Properties on Self and Peer

Let’s refresh our memories about the requestUserMedia() function you built back in

Requesting User-Media Permissions, on page 37. Recall that it looked like this:

async function requestUserMedia(media_constraints) {
$self.mediaStream = new MediaStream();
$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

$self.mediaStream.addTrack($self.media.getTracks()[0]);
displayStream($self.mediaStream, '#self');

}

report erratum • discuss

Refining the Initial Properties on Self and Peer • 99

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That function has the effect of requesting user permission to access the devices

you include in $self.mediaConstraints. So far, that’s been a single video device.

Once a user grants permission for your app to access the camera, the function

goes on to use some very brittle code ($self.media.getTracks()[0]) to grab the lone

video track and attach it to a new MediaStream object on $self.mediaStream. That

stream is then passed along to displayStream() so that users can see themselves.

In a bit, we’re going to alter that function significantly by building more logic

around $self.mediaStream. To prepare the way for those alterations, let’s move

$self.mediaStream out of requestUserMedia() and up to where the $self object is initially

declared, at the top of the main.js file.

While we’re looking at the $self object, let’s make a couple more adjustments

to it. First, set audio to true in the mediaConstraints object. That will ensure that

your app asks users for permission to access their microphones in addition

to their cameras. Users granting full access to their devices will return an

audio track as well as a video track from navigator.mediaDevices.getUserMedia().

Next, let’s establish two brand-new properties on $self: mediaTracks and features.
Assign an empty object to mediaTracks. Eventually, you’ll use that property to

manage the media tracks that are available for sending to the remote peer.

The features property can take an object of its own with one property, audio, set

to false. That property will serve two purposes: we’ll use it to mute user mics

when a call starts, so that there is no opportunity for instant, unexpected

feedback. And we’ll also use it to track a user’s mic state so that it can be

shared with the remote peer.

With these adjustments in place, your $self object should look like this:

demos/dc-media/js/main.js

/**
* Global Variables: $self and $peer
*/

const $self = {
rtcConfig: null,
isPolite: false,
isMakingOffer: false,
isIgnoringOffer: false,
isSettingRemoteAnswerPending: false,
mediaConstraints: { audio: true, video: true },➤

mediaStream: new MediaStream(),➤

mediaTracks: {},➤

features: {➤

audio: false,➤

},➤

};

Chapter 5. Streaming Complex Data • 100

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Great. And so long as we’re up at the top of the file, let’s modify $peer to also

take mediaStream, mediaTracks, and an empty features object—all of which will

serve the same purpose that they do on $self:

demos/dc-media/js/main.js

const $peer = {
connection: new RTCPeerConnection($self.rtcConfig),
mediaStream: new MediaStream(),➤

mediaTracks: {},➤

features: {},➤

};

Let’s also improve the resetPeer() function to re-establish the properties we just

added to the $peer object:

function resetPeer(peer) {
displayStream(null, '#peer');
peer.connection.close();
peer.connection = new RTCPeerConnection($self.rtcConfig);
peer.mediaStream = new MediaStream();➤

peer.mediaTracks = {};➤

peer.features = {};➤

}

You might be wondering why the features property is always set to an empty

object on $peer, rather than with audio: false as on $self. Eventually, you will

write media-toggling logic that will use a special data channel to send audio
and any other features one peer might want to communicate to the other. We

can’t know in advance what features the remote peer will have set, but the

placeholder object is there to receive them.

With all of those initial properties set on $self and $peer, and with resetPeer()
properly resetting the new $peer properties, we can turn to reworking the

requestUserMedia() function for better control over streaming media.

Managing Audio and Video Tracks in requestUserMedia()

So here’s a little fact about the call to navigator.mediaDevices.getUserMedia(): what

it returns is a promise that resolves to a media stream. So in that sense, the

creation of a MediaStream of your own on $self.mediaStream might seem redundant.

And in the simpler case of a stream with a lone video track, it kind of was.

But now that you’re assuming responsibility for multiple tracks that a peer

will be able to toggle on and off at will, it’s essential to maintain a MediaStream
of your own.

Let’s look at the complete revised requestUserMedia() function, and talk about

what its changes are doing:

report erratum • discuss

Refining the Initial Properties on Self and Peer • 101

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-media/js/main.js

async function requestUserMedia(media_constraints) {

$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

// Hold onto audio- and video-track references
$self.mediaTracks.audio = $self.media.getAudioTracks()[0];➤

$self.mediaTracks.video = $self.media.getVideoTracks()[0];➤

// Mute the audio if `$self.features.audio` evaluates to `false`
$self.mediaTracks.audio.enabled = !!$self.features.audio;➤

// Add audio and video tracks to mediaStream
$self.mediaStream.addTrack($self.mediaTracks.audio);➤

$self.mediaStream.addTrack($self.mediaTracks.video);➤

displayStream($self.mediaStream, '#self');
}

The first group of changes uses the getAudioTracks()8 and getVideoTracks() methods.9

Those pull the first ([0]) and, in this case, only audio and video tracks off of

the $self.media stream. Those are each in turn stored as references in the new

$self.mediaTracks object that you created in the previous section.

Then comes the line inside requestUserMedia() that’s all about safety:

// Mute the audio if `$self.features.audio` evaluates to `false`
$self.mediaTracks.audio.enabled = !!$self.features.audio;

That sets the enabled property on the audio track to the value you set on the

audio property in $self.features. The double-bang operator means that enabled will

be set to false even if you forget to set the property at all (in which case,

$self.features.audio will be undefined, which evaluates to false). Note, though, that

an erroneous string value will evaluate to true here, so be sure you’re setting

the Boolean false on the audio value in $self.features.

From a user’s perspective, setting enabled to false mutes a track.10 What happens

behind the scenes, though, is that the track continues to send frames of

silence for audio, and frames of black pixels for video. We’ll be addressing the

video frames in just a bit.

Finally, the revised requestUserMedia() function adds the tracks referenced in

$self.mediaTracks.audio and $self.mediaTracks.video to $self.mediaStream, which continues

to get passed along to the displayStream() function.

8. https://developer.mozilla.org/en-US/docs/Web/API/MediaStream/getAudioTracks
9. https://developer.mozilla.org/en-US/docs/Web/API/MediaStream/getVideoTracks
10. https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/enabled

Chapter 5. Streaming Complex Data • 102

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream/getAudioTracks
https://developer.mozilla.org/en-US/docs/Web/API/MediaStream/getVideoTracks
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/enabled
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Looping Through Media Tracks

The getAudioTracks() and getVideoTracks() methods make for code that is still a tad on the

brittle side, which is the price of their readability. Another approach would be to

continue using getTracks() and loop through the tracks it returns:

for (let track of $self.media.getTracks()) {
$self.mediaTracks[track.kind] = track;

}

That loop makes use of the read-only kind property on MediaStreamTrack,a which will be

"audio" for audio tracks and "video" for video tracks.

While that loop is potentially more elegant than longhand assignments using media-

specific methods like getAudioTracks(), note that there is never any guarantee of the

order of multiple tracks on any given media stream. That means that, whether you

grab the first track from getAudioTracks() or, effectively, the last track from a loop, in

the presence of multiple video tracks or audio tracks, you cannot know for certain

which audio or video track you’re grabbing.

If that makes your head hurt, don’t worry: we’ll return to this topic and unique

identifiers for media tracks in Chapter 7, Managing User Media, on page 173.

a. https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/kind

Revising the addStreamingMedia() function

The displayStream() function is not the only destination for user media, which

also gets passed to the remote peer in the addStreamingMedia() function. Let’s

update that as well. Previously, it expected stream and peer parameters. But

in the new track-centered logic, we can remove the stream parameter and loop

directly over tracks on the $self.mediaTracks object:

demos/dc-media/js/main.js

function addStreamingMedia(peer) {
const tracks_list = Object.keys($self.mediaTracks);
for (let track of tracks_list) {
peer.connection.addTrack($self.mediaTracks[track]);

}
}

Be sure also to update the establishCallFeatures() function call to addStreamingMedia()
by removing the old reference to the self stream. JavaScript being JavaScript,

that extra argument will be ignored, but it’s always good to keep code refer-

ences up to date:

report erratum • discuss

Refining the Initial Properties on Self and Peer • 103

https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/kind
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

function establishCallFeatures(peer) {
registerRtcCallbacks(peer);
addChatChannel(peer);
addStreamingMedia(peer);➤

}

Now we can look at the media-receiving logic, and update it to handle multiple

incoming media tracks.

Updating the handleRtcPeerTrack() callback

Let’s take one more walk down memory lane and recall how the handleRtcPeer-
Track() has looked up to this point:

function handleRtcPeerTrack({ track, streams: [stream] }) {
console.log('Attempt to display media from peer...');
displayStream(stream, '#peer');

}

Even though that callback destructured the track values from the event object,

we only ever used the stream value. That was basically a shortcut: now that we

are getting into multiple tracks, we can rewrite the handleRTCPeerTrack() callback

to destructure track values from the track event payload. We’ll then attach each

track to the stream we already prepared on $peer.mediaStream:

demos/dc-media/js/main.js

function handleRtcPeerTrack({ track }) {
console.log(`Handle incoming ${track.kind} track...`);
$peer.mediaTracks[track.kind] = track;
$peer.mediaStream.addTrack(track);
displayStream($peer.mediaStream, '#peer');

}

The handleRtcPeerTrack() callback is track-agnostic: it uses the kind property on

MediaStreamTrack objects to figure out what type of track has come in.11 Keep in

mind, too, that the track event fires per track, not per stream, so it will now

fire at least twice: once for the audio track, and once for the video track. That’s

why the stream provided with addTrack() is no longer of any use: it will never

include both audio and video, which is why it’s up to you to now manually

manage the stream on $peer.mediaStream.

The end result? The new track and stream properties you added to $peer, like

those you added to $self, have set the stage to provide finer-grained control

over user media. Let’s turn now to see what that control looks like in terms

of providing users the ability to toggle mics and cameras on and off.

11. https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/kind

Chapter 5. Streaming Complex Data • 104

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/kind
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Building A/V Toggles

So far, you’ve updated your app’s core logic for managing audio and video

tracks. You’ve also implemented a developer-safety feature by muting the

audio track as soon as your app loads. Your next task is to build the controls

and logic for toggling mics and cameras on and off. Initially, those controls will

trigger the intended effects—they’ll indeed toggle the user’s mic and cam-

era—but once we’ve finished them, we’ll use data channels to communicate

media changes to the remote peer.

Adding A/V Controls to the HTML

Let’s begin in the HTML and add a “Remote peer is muted” message below

the peer video. Begin by hiding the message from assistive technologies by

setting its aria-hidden attribute to true:12

demos/dc-media/index.html

<video id="peer"
autoplay
playsinline
poster="img/placeholder.png">

</video>
<p id="mic-status" aria-hidden="true">Remote peer is muted.</p>➤

In a bit, we’ll write CSS to hide the message from sighted users, too. Later,

we’ll use JavaScript to set the aria-hidden value to false when a remote peer is

actually muted.

First, let’s introduce a couple buttons for controlling user media. We’ll tuck them

inside of a new <footer> element, too, right before the app’s closing </main> tag:

demos/dc-media/index.html

<footer id="footer">
<button
aria-label="Toggle microphone"
role="switch"
aria-checked="true"
type="button"
id="toggle-mic">Mic</button>

<button
aria-label="Toggle camera"
role="switch"
aria-checked="true"
type="button"
id="toggle-cam">Cam</button>

</footer>

12. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-hidden

report erratum • discuss

Building A/V Toggles • 105

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/index.html
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/index.html
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-hidden
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Accessible Rich Internet Applications (ARIA) Attributes

ARIA attributes are a part of the Web Accessibility Initiative’s ARIA suite of web

standards.a They are meant to build additional information into HTML elements to

provide a more accessible experience on the web for everyone, especially users of

screen readers and other assistive technologies.

While some ARIA roles and attributes are implicit in certain HTML elements,b others—

such as aria-hidden—provide a powerful mechanism for expressing interface states that

HTML alone can’t always convey.

a. https://www.w3.org/WAI/standards-guidelines/aria/
b. https://www.w3.org/TR/html-aria/

You might notice some unusual attributes on both of those buttons (see

Accessible Rich Internet Applications (ARIA) Attributes, on page 106): aria-label
provides a more accessible description for what each button does.13 And

another pair of ARIA attributes—role="switch"14 and aria-checked="true"15
—work

in tandem to help assistive technologies present the buttons as toggles, each

with an on and off state.

Enhancing the A/V Controls in CSS

With the HTML set up, let’s now add a few enhancements in the CSS. We can

begin by adding a utility style that will always visually hide any element with

the aria-hidden attribute set to true:

demos/dc-media/css/screen.css

*[aria-hidden="true"] {
visibility: hidden;

}

Unlike display: none, which treats an element as though it no longer exists,

visibility: hidden preserves the space the element would otherwise appear in, were

it not hidden. The advantage to that is revealing a hidden element will not

cause any layout shifts or other unintended weirdness.

Let’s look at another example of writing CSS to ARIA attributes. Recall the

aria-checked attribute on <button>: when that attribute’s value is "false", let’s turn

the button to white-on-red, and even strike out the text of the button—just

to hammer home the idea that self’s mic or camera is off:

13. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label
14. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/switch_role
15. https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-checked

Chapter 5. Streaming Complex Data • 106

report erratum • discuss

https://www.w3.org/WAI/standards-guidelines/aria/
https://www.w3.org/TR/html-aria/
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-label
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Roles/switch_role
https://developer.mozilla.org/en-US/docs/Web/Accessibility/ARIA/Attributes/aria-checked
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-media/css/screen.css

button[aria-checked="false"] {
text-decoration: line-through;
color: white;
background: red;

}

Let’s also put 11 pixels of padding around the new #mic-status element that

will reveal the remote peer’s mic status:

demos/dc-media/css/screen.css

/* Video Elements */

#videos {
position: relative;

}
video {

background-color: #DDD;
display: block;
width: 100%;
aspect-ratio: 4 / 3;
object-fit: cover;
object-position: center;

}
#mic-status {➤

padding: 11px;➤

}➤

Finally, make a small modification to the CSS grid you built in Improving the

Chat App’s CSS, on page 76. You can add an auto-size row onto the grid, which

will hold the new <footer> element:

demos/dc-media/css/screen.css

#interface {
height: 100vh;
padding: 22px;
display: grid;
grid-gap: 11px;
grid-template-rows: auto auto 1fr auto;➤

}

We can style the footer element itself to display as a flexbox, with an 11px

column gap to separate the individual buttons:

demos/dc-media/css/screen.css

#footer {
display: flex;
column-gap: 11px;

}

report erratum • discuss

Building A/V Toggles • 107

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

We’ll also add a row to the grid inside the 680px media query and explicitly

declare where in the grid the chat box and footer will sit:

demos/dc-media/css/screen.css

@media screen and (min-width: 680px) {
#interface {
grid-template-columns: 1fr 1fr;
grid-template-rows: auto 1fr auto;➤

}
#header {
grid-column: 1 / 3;

}
#chat {➤

grid-column: 2 / 3;➤

grid-row: 2 / 4;➤

}➤

#footer {➤

grid-column: 1 / 2;➤

}➤

}

Refresh your app in the browser now. It should look something like this, with

the mic-status message hidden but the mic and camera toggles visible:

Wiring up the A/V Toggle Logic in JavaScript

Now that you’ve built the HTML structures and CSS styles that will power

your media toggles, you can wire everything together in JavaScript.

Chapter 5. Streaming Complex Data • 108

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

First, as soon as the page loads, make sure that the mic-toggle state accurately

reflects the false Boolean value you set on $self.features.audio:

demos/dc-media/js/main.js

/**
* User-Interface Setup
*/

document.querySelector('#toggle-mic')➤

.setAttribute('aria-checked', $self.features.audio);➤

Further down in the User-Interface Setup portion of the JavaScript file, you can

write some flexible logic to listen for clicks on the toggle buttons. We’ll do a little

JavaScript jujitsu here and set the listener up on the containing footer ele-

ment—rather than on the individual buttons. Because click events bubble in

JavaScript, it’s possible to listen for clicks on elements higher up in the DOM:

demos/dc-media/js/main.js

document.querySelector('#footer')
.addEventListener('click', handleMediaButtons);

The trade-off for having a single listener is that the handleMediaButtons callback

must inspect what’s been clicked. When it’s a button, we’ll use a little Java-

Script switch statement to route each actual button-click to the correct toggle

function:

demos/dc-media/js/main.js

function handleMediaButtons(event) {
const target = event.target;
if (target.tagName !== 'BUTTON') return;
switch (target.id) {
case 'toggle-mic':
toggleMic(target);
break;

case 'toggle-cam':
toggleCam(target);
break;

}
}

That’s pretty cool, isn’t it? If you need additional toggle buttons, you can add

them without attaching any new event listeners.

You still have to write the toggle functions themselves, of course. In the name

of clarity, these will be a tad repetitious to start. Their purpose is to determine

the enabled state of the corresponding media track (audio or video), toggle it,

and then update the button’s aria-checked state in the HTML. Let’s start with

the toggleMic() function:

report erratum • discuss

Building A/V Toggles • 109

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

function toggleMic(button) {
const audio = $self.mediaTracks.audio;
const enabled_state = audio.enabled = !audio.enabled;

$self.features.audio = enabled_state;

button.setAttribute('aria-checked', enabled_state);
}

That function holds onto a reference to $self.tracks.audio. It then captures the

track’s new enabled state by negating its current state: if audio.enabled is true
(the mic is on), enabled_state will evaluate to false (the user is turning off the mic).

The function then preserves the new enabled_state on $self.features.audio and also

sets it on the <button> element’s aria-checked attribute. That’s why it’s necessary

to pass the button element in as the target value from the handleMediaButtons()
callback.

The toggleVideo() function is almost identical to toggleMic(), but with one key dif-

ference: by disabling a video track (video.enabled = false), the video will appear

to be frozen when in reality the peer will stop sending new frames of video.

But a frozen video frame will make a live stream appear broken. So we’ll need

an additional piece of logic to add or remove the video track on $self.mediaStream:

function toggleCam(button) {
const video = $self.mediaTracks.video;
const enabled_state = video.enabled = !video.enabled;

$self.features.video = enabled_state;

button.setAttribute('aria-checked', enabled_state);

if (enabled_state) {➤

$self.mediaStream.addTrack($self.mediaTracks.video);➤

}➤

else {➤

$self.mediaStream.removeTrack($self.mediaTracks.video);➤

}➤

}

If the new enabled_state is true, the if/else statement will add the video track ref-

erenced by $self.mediaTracks.video back onto $self.mediaStream. Conversely, if the

camera is switched off, the track is removed.

Great. Give this all a test. Turn your speakers or system volume way down,

and then you can even join the call from a second browser window as shown

in the screenshot on page 111. Give it a try from a second device, too, especially

if you didn’t try that back in Testing the Text Chat with a Second Device, on

page 85.

Chapter 5. Streaming Complex Data • 110

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Pretty great. On the self side of the call, things are functioning pretty well.

The black boxes rendered in place of disabled videos look a little jarring,

though. The good news is you already have a function in place to correct

those, at least for the self side of the call: displayStream(). Go ahead and call it

inside the else statement:

demos/dc-media/js/main.js

function toggleCam(button) {
const video = $self.mediaTracks.video;
const enabled_state = video.enabled = !video.enabled;

$self.features.video = enabled_state;

button.setAttribute('aria-checked', enabled_state);

if (enabled_state) {
$self.mediaStream.addTrack($self.mediaTracks.video);

} else {
$self.mediaStream.removeTrack($self.mediaTracks.video);
displayStream($self.mediaStream, '#self');➤

}
}

It’s only necessary to call displayStream() when there is no video track. Without

a video track, the poster image will display—not the empty black video frame.

report erratum • discuss

Building A/V Toggles • 111

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

However, when a video track is added to the peer stream, it will automatically

replace the poster image and play as expected.

There are now two things left to do to complete your A/V toggles, which we’ll

use data channels to implement: giving the self side of the call an indication

that the remote peer is muted (we’ll finally reveal that status message), and

displaying the smiley-face poster image instead of the black video box when

the remote peer’s camera is off, too.

Sharing Features over Data Channels

Just like we did to power the chat, let’s write another symmetric data channel

whose only purpose will be to exchange feature information between two peers.

Start off by creating an addFeaturesChannel() function that resembles the add-
ChatChannel() function you created in Setting Up the Text-Chat Data Channel,

on page 83. The features channel will be negotiated and established with an

id of 110. Inside the function, add an onopen event whose callback immediately

sends along a JSON version of $self.features to the remote peer:

demos/dc-media/js/main.js

function addFeaturesChannel(peer) {
peer.featuresChannel =
peer.connection.createDataChannel('features',

{ negotiated: true, id: 110 });

peer.featuresChannel.onopen = function() {
console.log('Features channel opened.');
// send features information just as soon as the channel opens
peer.featuresChannel.send(JSON.stringify($self.features));

};
}

We’ll of course need to be able to send and update additional features as

needed, but this will help share known features—like a muted mic—as soon

as possible.

Let’s think a moment about the receiving side as represented by the onmessage
event. At a minimum, we should update the $peer.features object with each

feature that comes in. But updating that object is only part of the story: it’ll

often be necessary to take action based on the incoming feature and its value.

For example, when a remote peer shares the $self.features.audio feature, the local

peer needs to show or hide the “Remote peer is muted” status. But rather

than create a bunch of free-floating functions, let’s set things up programmat-

ically and build a featureFunctions object literal that we’ll populate with functions

to be executed for specific features.

Chapter 5. Streaming Complex Data • 112

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

For starters, let’s write an audio-feature function that updates the aria-hidden
property to show or hide the remote peer’s mic-status message:

const featureFunctions = {
audio: function() {
const status = document.querySelector('#videos #status');
// reveal "Remote peer is muted" message if muted (aria-hidden=false)
// otherwise hide it (aria-hidden=true)
status.setAttribute('aria-hidden', $peer.features.audio);

}
}

To programmatically call that and any other functions housed in the feature-
Functions object, let’s prepare the onmessage callback inside the addFeaturesChannel()
function:

demos/dc-media/js/main.js

function addFeaturesChannel(peer) {
peer.featuresChannel =
peer.connection.createDataChannel('features',

{ negotiated: true, id: 110 });

peer.featuresChannel.onopen = function() {
console.log('Features channel opened.');
// send features information just as soon as the channel opens
peer.featuresChannel.send(JSON.stringify($self.features));

};

peer.featuresChannel.onmessage = function(event) {➤

const features = JSON.parse(event.data);➤

const features_list = Object.keys(features);➤

for (let f of features_list) {➤

// update the corresponding features field on $peer➤

peer.features[f] = features[f];➤

// if there's a corresponding function, run it➤

if (typeof featureFunctions[f] === 'function') {➤

featureFunctions[f]();➤

}➤

}➤

};➤

}

What that function does is, first, parse the incoming JSON data as a Java-

Script object called features. A for loop then iterates over each of that object’s

properties. Inside the loop, there is logic to update the value on the locally

stored $peer.features object and then use typeof to test for a function on feature-
Functions that matches the incoming feature name.

We have just about enough of the code set up to test this out. But we first

need to call addFeaturesChannel() from inside the establishCallFeatures() function. To

report erratum • discuss

Sharing Features over Data Channels • 113

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

improve the chances that any existing features are sent as soon as possible,

call it before the addChatChannel() function, which might have queued messages

to send:

demos/dc-media/js/main.js

function establishCallFeatures(peer) {
registerRtcCallbacks(peer);
addFeaturesChannel(peer);➤

addChatChannel(peer);
addStreamingMedia(peer);

}

Go ahead and give it a try. If everything is working, you should almost

immediately see the “Remote peer is muted” status below the remote peer’s

video.

All right. That’s great for features, like a muted mic, that are set at the start

of a call. But to make the features channel complete, we also need to be able

to share new features or changes to existing ones.

Sharing Features as Needed

While we could make things kind of simple and share the entire $self.features
object, let’s take a finer-grained approach and share only those features we

Chapter 5. Streaming Complex Data • 114

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

specifically need to. Since you now have logic in place to fire callbacks for

specific features, you’ll want to be really smart and economical about sharing

features. Let’s look at the entire shareFeatures() function, and then consider

what it’s doing:

demos/dc-media/js/main.js

function shareFeatures(...features) {
const featuresToShare = {};

// don't try to share features before joining the call or
// before the features channel is available
if (!$peer.featuresChannel) return;

for (let f of features) {
featuresToShare[f] = $self.features[f];

}

try {
$peer.featuresChannel.send(JSON.stringify(featuresToShare));

} catch(e) {
console.error('Error sending features:', e);
// No need to queue; contents of `$self.features` will send
// as soon as the features channel opens

}
}

The function takes a rest parameter, ...features, so that it’s possible to share

more than one feature at a time.16 A rest parameter looks similar to the spread

syntax you used with classList above in Acknowledging Received Messages, on

page 95, but while the spread syntax makes it possible to pass an array to a

function as individual values, a rest parameter makes individual values

available as an array within the function. Rest-parameter syntax is supported

in all browsers that ship with WebRTC.

Inside the function, a featuresToShare object will be responsible for managing

the features to be shared and of course their values. Their values are taken

directly from the object referenced from $self.features.

In case a user does something like toggle the camera on or off before joining

the call, the shareFeatures() function will quietly exit, care of a return statement.

It’s worth noting that there is no need to queue the features the way we do

with chat messages, because the onopen callback inside of addFeaturesChannel()
will always transmit the complete $self.features object as soon as the channel

opens.

With that all set, let’s call shareFeatures() from inside the toggleMic() function:

16. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

report erratum • discuss

Sharing Features over Data Channels • 115

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-media/js/main.js

function toggleMic(button) {
const audio = $self.mediaTracks.audio;
const enabled_state = audio.enabled = !audio.enabled;

$self.features.audio = enabled_state;

button.setAttribute('aria-checked', enabled_state);

shareFeatures('audio');➤

}

function toggleCam(button) {
const video = $self.mediaTracks.video;
const enabled_state = video.enabled = !video.enabled;

$self.features.video = enabled_state;

button.setAttribute('aria-checked', enabled_state);

shareFeatures('video');➤

if (enabled_state) {
$self.mediaStream.addTrack($self.mediaTracks.video);

} else {
$self.mediaStream.removeTrack($self.mediaTracks.video);
displayStream($self.mediaStream, '#self');

}
}

Reload your app in two browser windows, and then toggle the mic from one

side of the call. On the remote side, you should see the “Remote peer is muted”

message appear and disappear as you click it. Nice!

Now let’s get things working for a toggleable video, too. You’re already calling

shareFeatures() from within the toggleCam() function. To bring it on home, add a

video member to the featureFunctions object, whose complete form to this point

will look like this—complete with a call to displayStream() when the remote peer’s

camera toggles off:

demos/dc-media/js/main.js

const featureFunctions = {
audio: function() {
const status = document.querySelector('#mic-status');
// reveal "Remote peer is muted" message if muted (aria-hidden=false)
// otherwise hide it (aria-hidden=true)
status.setAttribute('aria-hidden', peer.features.audio);

},
video: function() {➤

// This is all just to display the poster image,➤

// rather than a black frame➤

if (peer.mediaTracks.video) {➤

if (peer.features.video) {➤

peer.mediaStream.addTrack(peer.mediaTracks.video);➤

Chapter 5. Streaming Complex Data • 116

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

} else {➤

peer.mediaStream.removeTrack(peer.mediaTracks.video);➤

displayStream(peer.mediaStream, '#peer');➤

}➤

}➤

},➤

};

One more time, give things a test across two browser windows or devices.

Your mic and camera toggles should be working as expected. And you should

be feeling pretty great about yourself: you now have audio as well as video

streaming in your app.

Sending Images over the Chat

Let’s return to the chat feature now one last iteration: enabling users to send

and receive images.

Text messages will continue to be sent over the symmetric, negotiated chat

channel. But in a return to the short-lived data channels you wrote for the

video-filter feature in Applying Filters Remotely with Data Channels, on page

71, each image a user sends will be delivered over its own asymmetric, short-

lived data channel.

Your use of multiple data channels will be invisible to users: images will be

appended to the chat log just like text messages are already. But by using

one data channel per image, we will avoid congestion on the primary text-

chat data channel. It would become a lot less performant for sending text

messages if it were also used to stream binary data. As a bonus, using a

dedicated data channel for each image sent will actually simplify the logic for

receiving images.

Setting Up the User Interface for Images

To build an interface for sending any kind of file, we need to make use of

HTML file inputs. The native HTML file input element is regrettably uggo, as

the kids say. Let’s look at a method for avoiding including one in your interface

by instead adding a button with an accessible <label> element:

demos/dc-chat-images/index.html

<form id="chat-form" action="#null">
<label for="chat-msg" class="preserve-access">Compose Message</label>
<input type="text" id="chat-msg" name="chat-msg" autocomplete="off" />
<label for="chat-img-btn" class="preserve-access">Send Image</label>➤

<button type="button" id="chat-img-btn">Image</button>➤

<button type="submit" id="chat-btn">Send</button>
</form>

report erratum • discuss

Sending Images over the Chat • 117

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/index.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

We’re about to write JavaScript to enable clicks on that button to create and

trigger an artificial click on a file input behind the scenes. But first, adjust

your CSS to style the new button:

demos/dc-chat-images/css/screen.css

#chat-form button {
cursor: pointer;
flex: 0 0 auto;
background: #009;
color: #EEE;

}
#chat-img-btn {➤

background: #EEE;➤

color: #000;➤

margin-right: 5.5px;➤

}➤

To finish up the UI, let’s write a little bit of JavaScript that creates and effec-

tively passes clicks on the image button along to a hidden file input. Note that

Firefox’s security policy prohibits passing an artificial click() on a file input

that has been written in the actual HTML. That’s not a problem, because we’ll

set this one up entirely in JavaScript, inside the handleImageButton() callback.

In another twist, Safari ignores artificial click events on JavaScript-created

file inputs unless they’re appended to the DOM. So we have to do that, too:

demos/dc-chat-images/js/main.js

document.querySelector('#chat-img-btn')
.addEventListener('click', handleImageButton);

/**
* User-Interface Functions and Callbacks
*/

function handleImageButton() {
let input = document.querySelector('input.temp');
input = input ? input : document.createElement('input');
input.className = 'temp';
input.type = 'file';
input.accept = '.gif, .jpg, .jpeg, .png';
input.setAttribute('aria-hidden', true);
// Safari/iOS requires appending the file input to the DOM
document.querySelector('#chat-form').appendChild(input);
input.addEventListener('change', handleImageInput);
input.click();

}

That function looks for an existing file input with a class of temp. If none exists,

it creates a new one. A file input might already exist if a user clicks the Image

button but clicks Cancel in the OS file-selector box before choosing a file.

Chapter 5. Streaming Complex Data • 118

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Regrettably, there is no standard event we can hook into to detect when

someone has canceled selecting a file. So the file input will stay in the DOM

in that case. In a bit, we’ll remove the temporary file input from the DOM in

the handleImageInput() callback. But that callback will only ever run when

someone selects a file.

File inputs take an optional accept attribute, which is useful for describing

allowable files by their extension or MIME type. Extensions are a little more

human-readable, not to mention memorable for weary developers, so we can

write extensions as a comma-separated list of the most web-friendly image

types: GIFs, JPEGs, and PNGs. Many operating systems prevent users from

selecting non-matching files. But note that that is an interface nicety, not

anything like a security policy.

The handleImageButton() function sets the aria-hidden ARIA attribute, which will

again hide the temporary file input from assistive technologies. But unlike

the “Remote user is muted” message you hid with visibility: hidden in Adding A/V

Controls to the HTML, on page 105, we want to completely remove the tempo-

rary file input from the document flow. That’s a job for display: none, coupled

with a very fancy two-attribute CSS selector:

demos/dc-chat-images/css/screen.css

.preserve-access {
position: absolute;
left: -20000px;

}

*[aria-hidden="true"] {
visibility: hidden;

}
input[type="file"][aria-hidden="true"] {➤

display: none;➤

}➤

So that you can test out the logic for choosing a file, add a placeholder function

definition for the handleImageInput() callback on the file input’s change event. It

will fire when users select an image from the operating-system file picker:

function handleImageInput(event) {
// TODO: Handle image input

}

Open your work in the browser, and try clicking on the image button. You

should be greeted by your operating system’s file picker. On most operating

systems, GIF, JPEG, and PNG files will be highlighted in some way. On MacOS,

files that aren’t of those types appear grayed out and cannot be selected as

shown in the screenshot on page 120.

report erratum • discuss

Sending Images over the Chat • 119

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

If you select a file, nothing happens yet: we still have to write the logic that

takes a chosen file and appends it to the chat log. So let’s do that.

Appending Images to the Chat Log

We’re going to build a slightly dangerous interface pattern for sending images,

to keep our focus on how to send binary data over the chat: as soon as users

select a file, we’ll append it to the user’s chat log and send it over a data

channel. (I invite you to polish this bit of interface on your own later, by pre-

viewing the image and pairing it with its own Send and Cancel buttons.)

To create the dangerous form of this UI, let’s build out the handleImageInput()
callback:

demos/dc-chat-images/js/main.js

function handleImageInput(event) {
event.preventDefault();
const image = event.target.files[0];
const metadata = {
kind: 'image',
name: image.name,
size: image.size,
timestamp: Date.now(),
type: image.type,

};
appendMessage('self', '#chat-log', metadata, image);
// Remove appended file input element
event.target.remove();

}

That function grabs only the first file users might have selected (event.target
.files[0]) and builds a nice chunk of metadata describing the file, including its

Chapter 5. Streaming Complex Data • 120

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

name, size, and type. While we can read those properties off of the file itself

on the sending side, we want to send them ahead of the file itself to the

receiving side. Along with the properties pulled off the file, a hard-coded kind:
'image' will help prefix each data channel for sending along an image. And just

like you did for the chat’s text messages, you can generate another Unix

timestamp and send it along with the image metadata.

You can also reuse your appendMessage() function by updating it to take a fourth

argument—image—that will handle the actual image file. At the very bottom

of the handleImageInput() function, event.target.remove() swoops in and removes the

temporary file input we appended to the DOM in the handleImageButton() callback.

Having called appendMessage() with a fourth argument, we need to update its

function definition. Remember that JavaScript, for good or ill, does not com-

plain about mismatched numbers of arguments. You can add the image
argument onto the end of the function definition without angering JavaScript

or any of the previous three-argument calls to it for appending chat messages:

demos/dc-chat-images/js/main.js

function appendMessage(sender, log_element, message, image) {➤

const log = document.querySelector(log_element);
const li = document.createElement('li');
li.className = sender;
li.innerText = message.text;
li.dataset.timestamp = message.timestamp;
if (image) {➤

const img = document.createElement('img');➤

img.src = URL.createObjectURL(image);➤

img.onload = function() {➤

URL.revokeObjectURL(this.src);➤

scrollToEnd(log);➤

};➤

li.innerText = ''; // undefined on images➤

li.classList.add('img');➤

li.appendChild(img);➤

}➤

log.appendChild(li);
scrollToEnd(log);➤

}

Inside the appendMessage() function, we check for the presence of an image value.

If one exists, it creates a new element. We can then employ the URL

API and its createObjectURL() method17 to take the image file’s raw data and write

it to an object. We’ll then set that object on the element’s src attribute

to display the image. The image’s onload event then revokes the object URL’s

17. https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL

report erratum • discuss

Sending Images over the Chat • 121

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/URL/createObjectURL
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

reference in JavaScript, which frees up the considerable space the image data

would otherwise occupy in memory. Don’t worry: the image will continue to

display on screen even after its URL object has been revoked.

Wrapping up the revisions for handling images, we set the innerText value to

an empty string and add a class of img onto the message’s containing list item

before appending the newly created image element.

Notice that appendMessage() calls a new scrollToEnd() function that keeps the chat

box scrolled to its bottom every time a new message arrives. That creates the

illusion of messages being appended to the bottom of the chat, which is

the behavior of most other messaging apps.

The scrollToEnd() function also gets called on the img.onload callback. That is

necessary for the scrollHeight value to accurately reflect the dimensions of the

image, which are only known once the image has actually loaded. Without

an accurate scrollHeight value, the image would appear to be cut off at the bottom

of the chat box. Expressed as a reusable function, scrollToEnd() looks like this:

demos/dc-chat-images/js/main.js

function scrollToEnd(el) {
if (el.scrollTo) {
el.scrollTo({

top: el.scrollHeight,
behavior: 'smooth',

});
} else {
el.scrollTop = el.scrollHeight;

}
}

Let’s hop back into the CSS file and make a couple of adjustments to the way

list items and images are styled in the chat log:

demos/dc-chat-images/css/screen.css

/* Chat Elements */

img {➤

display: block;➤

max-width: 100%;➤

}➤

#chat-log li {
border-radius: 5.5px;
padding: 5.5px;
margin-bottom: 5.5px;
max-width: 60%;
clear: both;
overflow: hidden;➤

}

Chapter 5. Streaming Complex Data • 122

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

#chat-log .img {➤

padding: 0;➤

}➤

Those adjustments prepare images to display responsively and fit within their

containing chat element, which gets its own enhancements. First, we set

the overflow property to hidden, which is a little trick to preserve the list item’s

rounded corners when displaying the child element. To complete the

effect and avoid presenting a colored frame around the image, we set the padding

to 0 for the .img class, which you added in the appendMessage() callback with

li.classList.add('img'). The image will now take up the entire message bubble and

have rounded corners.

Let’s give this a try. Reload your browser, hit the Image button, and choose

a file: you’ll see it appended to the chat log, with reduced opacity just like the

text messages—nice, right?!

With the interface all wired up to handle images, it’s time to invite data

channels to the party and wire them up to send and receive binary data.

Exchanging Feature-Detection Information

In your WebRTC journey so far, Google Chrome has been something of a hero:

a modern WebRTC implementation, with no need for adapter.js on properties

like connectionState, as we saw in Loading adapter.js, on page 69. But like any

hero, Chrome has its tragic flaws. The big one we need to address right away

is how Chrome handles binary data over WebRTC data channels—something

currently not covered by adapter.js.

report erratum • discuss

Sending Images over the Chat • 123

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The WebRTC specification provides for sending one of two binary types over

data channels:18 arraybuffer, which is part of the ECMAScript specification

behind JavaScript, and binary large object, better known as blob, which

browsers implement according to the W3C File API specification.19 All browsers

support the arraybuffer type over data channels. Modern browsers—including

Safari but surprisingly excluding Chrome—support the blob type. Chrome

supports the Blob API—which we’ll be using in a bit—but Chrome does not

currently support sending blobs over WebRTC data channels.

In order to send binary data as a blob over an RTCDataChannel, both peers must

support doing so. The trick is that we need to know whether both peers sup-

port the blob binary type before sending even the first byte of binary data.

Thanks to the feature-channel logic you wrote for handling mic and camera

toggles, you can piggyback on the addFeaturesChannel() logic and check the default

binaryType on the features channel itself:

demos/dc-chat-images/js/main.js

function addFeaturesChannel(peer) {

// snip, snip, snip

peer.featuresChannel.onopen = function() {
console.log('Features channel opened.');
$self.features.binaryType = peer.featuresChannel.binaryType;➤

// send features information just as soon as the channel opens
peer.featuresChannel.send(JSON.stringify($self.features));

};

// snip, snip, snip

}

All that’s doing is setting up another features property—$self.features.binaryType—
and assigning it the browser-default value of the binaryType on the features

data channel.

In Chrome and Chrome-based browsers like Edge, the binaryType will be array-
buffer; in all other modern browsers, the default will be blob. That new feature

then gets passed along with the rest of the features object over the features

channel. The logic you already built in Sharing Features over Data Channels,

on page 112, is all set to receive the same feature information from the remote

peer, which will be stored in the features object on $peer.

Beautiful. What a graceful way to detect and share feature availability between

peers. Now let’s use that shared-feature information to send binary data.

18. https://www.w3.org/TR/webrtc/#dom-datachannel-binarytype
19. https://www.w3.org/TR/FileAPI/

Chapter 5. Streaming Complex Data • 124

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
https://www.w3.org/TR/webrtc/#dom-datachannel-binarytype
https://www.w3.org/TR/FileAPI/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Sending and Receiving Binary Data

You have now written all of the foundational logic to send and receive binary

data along with a custom JSON payload of metadata for each file sent over a data

channel. Let’s set up a sendFile() function that opens a data channel for each

file a user wants to send.

To start with, create a function that takes two arguments, peer and payload,
and a handful of variables:

function sendFile(peer, payload) {
const { metadata, file } = payload;
const file_channel =

peer.connection.createDataChannel(`${metadata.kind}-${metadata.name}`);
const chunk = 16 * 1024; // 16KiB chunks

}

The body of the function opens by destructuring metadata and file from payload. As

you’ll see, that will simplify the sending of images that wind up in the queue.

The function then sets up an asymmetric data channel whose label will comprise

of the value in metadata.kind followed by a hyphen and the file’s name.

Next comes that curious chunk constant. It represents the maximum size for

the pieces of data that we’ll be sending. There won’t be any need to share it

with your RTCPeerConnection or any other WebRTC API, though: it’s a value that

will be used only in your logic for sending binary data.

Maximum Message Sizes in WebRTC

WebRTC data channels cannot send messages larger than a certain size. You can

inspect this value for a given browser by running $peer.connection.sctp.maxMessageSize in
your browser console when you’re connected to a call. Two connected browsers will

often report different sizes. And sometimes, especially on Firefox, the maxMessageSize
will be a very large number.

Generally speaking, though, we want to go with a very conservative, small number.

Although they also fire more calls to the send event, smaller chunks are generally

more interoperable with older browsers. On data channels that enable both users to

send binary data, large message sizes can cause congestion if both peers are attempting

to send very large messages. The sendFile() function uses a very modest 16KiB chunk,

which should be interoperable with all browsers.a

If you’d like, you can add chunk as a third argument on your function to make it easier

to experiment with different chunk sizes.

a. https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels#understand-
ing_message_size_limits

report erratum • discuss

Sending and Receiving Binary Data • 125

https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels#understanding_message_size_limits
https://developer.mozilla.org/en-US/docs/Web/API/WebRTC_API/Using_data_channels#understanding_message_size_limits
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

With that all set, let’s actually dig into the logic for chunking up and sending

binary data.

Sending Binary Data

Start by setting up an anonymous asynchronous function on the data chan-

nel’s onopen handler. We want to get down to business as soon as the per-file

data channel has opened.

demos/dc-chat-images/js/main.js

function sendFile(peer, payload) {
const { metadata, file } = payload;
const file_channel =

peer.connection.createDataChannel(`${metadata.kind}-${metadata.name}`);
const chunk = 16 * 1024; // 16KiB chunks
file_channel.onopen = async function() {➤

if (!peer.features ||➤

($self.features.binaryType !== peer.features.binaryType)) {➤

file_channel.binaryType = 'arraybuffer';➤

}➤

// Prepare data according to the binaryType in use➤

const data = file_channel.binaryType ===➤

'blob' ? file : await file.arrayBuffer();➤

// Send the metadata➤

file_channel.send(JSON.stringify(metadata));➤

// Send the prepared data in chunks➤

for (let i = 0; i < metadata.size; i += chunk) {➤

file_channel.send(data.slice(i, i + chunk));➤

}➤

};➤

}

The onopen callback opens with a small bit of Boolean logic that checks whether

the features property is missing for $peer. That could happen if someone tried to

send a file before the remote peer has shared feature information. If that’s

the case, we fall back to the arraybuffer binary type, which all browsers support,

by setting it explicitly on the data channel instance, file_channel.binaryType.

The line comparing self and peer binary types is slicker than it looks. If there

is a difference between them, we manually set the the data channel’s binary

type to arraybuffer. Any difference between browsers means that we need to fall

back to arraybuffer. When there’s no difference, we don’t need to set anything

at all—regardless of what the browsers support. If both browsers are Chrome,

for example, they’ll default to arraybuffer without needing to explicitly set it on

file_channel.binaryType. All other browsers will default to blob automatically. See?

Pretty slick.

Chapter 5. Streaming Complex Data • 126

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Still inside the anonymous callback to file_channel.onopen, we hit these interesting

lines:

const data = file_channel.binaryType ===
'blob' ? file : await file.arrayBuffer();

Browsers that support the blob binary type can handle the file object as is

(surprise! the file gets passed into the browser from the OS as a blob). But

when an arraybuffer is needed, we create one from the blob object. That happens

asynchronously, which is why this anonymous callback must be defined as

async.

Then it’s onto the sending logic: we stringify the metadata into some whole-

some JSON goodness and send it across, like we’ve done with the chat’s

JSON-enhanced text messages. But sending the file’s binary data requires a

little old-school for loop:

// Send the prepared data in chunks
for (let i = 0; i < metadata.size; i += chunk) {

file_channel.send(data.slice(i, i + chunk));
}

Extremely happily for us, blobs and array buffers alike have an identically

constructed slice() method. That saves us from worry about whether we’re

dealing with a blob or an array buffer in the body of the loop. The slice() method

takes start and end values to carve off a generous portion of binary data, still

warm from the oven. The for loop increases the i value by the chunk size on

each iteration, so the loop can send along the next 16KiB chunk of data over

the data channel until there’s no data left.

To finish off the sendFile() function, let’s also include a callback for the onmessage
event, which will reuse the handleResponse() function before closing out the file’s

data channel after the response has come in. (We’ll craft and send the response

from the receiveFile() function, which we’ll build next.)

demos/dc-chat-images/js/main.js

function sendFile(peer, payload) {
const { metadata, file } = payload;
const file_channel =

peer.connection.createDataChannel(`${metadata.kind}-${metadata.name}`);
const chunk = 16 * 1024; // 16KiB chunks
file_channel.onopen = async function() {
if (!peer.features ||
($self.features.binaryType !== peer.features.binaryType)) {
file_channel.binaryType = 'arraybuffer';

}

report erratum • discuss

Sending and Receiving Binary Data • 127

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

// Prepare data according to the binaryType in use
const data = file_channel.binaryType ===
'blob' ? file : await file.arrayBuffer();

// Send the metadata
file_channel.send(JSON.stringify(metadata));
// Send the prepared data in chunks
for (let i = 0; i < metadata.size; i += chunk) {
file_channel.send(data.slice(i, i + chunk));

}
};
file_channel.onmessage = function({ data }) {➤

// Sending side will only ever receive a response➤

handleResponse(JSON.parse(data));➤

file_channel.close();➤

};➤

}

With the sendFile() function complete, let’s call it in the context of sendOrQueue-
Message(). That will require checking for a file member on message, and calling

sendFile() if the file member exists:

demos/dc-chat-images/js/main.js

function sendOrQueueMessage(peer, message, push = true) {
const chat_channel = peer.chatChannel;
if (!chat_channel || chat_channel.readyState !== 'open') {
queueMessage(message, push);
return;

}
if (message.file) {➤

sendFile(peer, message);➤

} else {➤

try {
chat_channel.send(JSON.stringify(message));

} catch(e) {
console.error('Error sending message:', e);
queueMessage(message, push);

}
}➤

}

Note that the message-queueing logic still applies, even to image files. If the

main data channel is out of service or hasn’t been created yet, the image file

and its metadata will be queued, too. Nice!

Pulling it all together, we can now call sendOrQueueMessage() from inside the

handleImageInput() callback. You can build a little payload object with metadata and

file properties:

Chapter 5. Streaming Complex Data • 128

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/dc-chat-images/js/main.js

function handleImageInput(event) {
event.preventDefault();
const image = event.target.files[0];
const metadata = {
kind: 'image',
name: image.name,
size: image.size,
timestamp: Date.now(),
type: image.type,

};
const payload = { metadata: metadata, file: image };➤

appendMessage('self', '#chat-log', metadata, image);
// Remove appended file input element
event.target.remove();
// Send or queue the file
sendOrQueueMessage($peer, payload);➤

}

Boom. The sending-side logic is all complete. Let’s switch gears and write the

logic for the receiving side.

Receiving Binary Data

With all of the file-sending logic fresh in our heads, let’s get right to work

building a complementary receiveFile() function:

demos/dc-chat-images/js/main.js

function receiveFile(file_channel) {
const chunks = [];
let metadata;
let bytes_received = 0;
file_channel.onmessage = function({ data }) {
// Receive the metadata
if (typeof data === 'string' && data.startsWith('{')) {

metadata = JSON.parse(data);
} else {

// Receive and squirrel away chunks...
bytes_received += data.size ? data.size : data.byteLength;
chunks.push(data);
// ...until the bytes received equal the file size
if (bytes_received === metadata.size) {

const image = new Blob(chunks, { type: metadata.type });
const response = {

id: metadata.timestamp,
timestamp: Date.now(),

};
appendMessage('peer', '#chat-log', metadata, image);

report erratum • discuss

Sending and Receiving Binary Data • 129

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

// Send an acknowledgement
try {

file_channel.send(JSON.stringify(response));
} catch(e) {
queueMessage(response);

}
}

}
};

}

That looks like a lot of code, but you’ve seen almost all of it before! We’re

setting up variables for a receiving-side chunk array, the processed metadata,

and the number of bytes received. We then inspect the data coming in. If it

opens with a curly brace, {, we know it’s the JSON metadata coming in. So

we parse it. No sweat.

But then comes the exciting part, where we reassemble the chunks of binary

data coming in over the data channel. Blobs and array buffers both have a

.slice() method, as we saw for sending the file, but their implementations in

RTCDataChannels use different properties for reporting the amount of data a

chunk contains. To abstract away that difference, we again use a ternary

operator—this time to keep track of how many bytes have been received:

bytes_received += data.size ? data.size : data.byteLength;

As each binary chunk comes in, we add its total bytes (data.size for blobs,

data.byteLength for array buffers) to the total on bytes_received.

The data itself gets pushed onto the end of the chunk array until finally the

bytes_received matches the value on the metadata payload. At that point, we

reassemble the array chunks into a blob for passing into appendMessage(). Again,

despite Chrome’s lack of support for sending blobs over data channels, it

implements the new Blob() constructor just fine. We also construct a response
object, just like for acknowledging text messages. When the file transfer is

complete, we try to send the response, or at least queue it for sending later.

To wire up the receiving logic, we need to register the receiveFile() callback on

the handleRtcDataChannel() event handler we set up way back in Listening for the

Filter Data Channel on the Remote Peer, on page 72:

demos/dc-chat-images/js/main.js

function handleRtcDataChannel({ channel }) {
const label = channel.label;
console.log(`Data channel added for ${label}`);
if (label.startsWith('filter-')) {
document.querySelector('#peer').className = label;

Chapter 5. Streaming Complex Data • 130

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/dc-chat-images/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

channel.onopen = function() {
channel.close();

};
}
if (label.startsWith('image-')) {➤

receiveFile(channel);➤

}➤

}

Testing Out Your Image-Capable Chat

Now for the moment of truth. Go ahead and open your app in two browser

windows, and join the call. Click the Image button, choose an image of one

of the allowed types (GIF, JPEG, or PNG) on your file system, and watch for

it to append to both the local and remote peer’s chat logs. Try sending one

from the other side, too. You should see something like this, but of course

with a photo of your own ride-or-die house pet. (His name’s Hank, and he’s

a rescue—yes, he’s that cute, and no, he never leaves my side. He’s also the

official spokesdog for Programming WebRTC.)

Awesome. Just awesome. I wish I could high-five you right now. This is a

another huge achievement, and your WebRTC journey through the fundamen-

tals of all aspects of data channels is now complete.

report erratum • discuss

Sending and Receiving Binary Data • 131

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Next Steps

When I said your journey with WebRTC fundamentals is nearing its end, that

wasn’t hyperbole. You’ve now mastered all of the major pieces: signaling,

establishing a peer connection, sending and receiving user media, and now

sending and queueing all possible forms of data over a WebRTC data channel.

You even know how to abstract away the differences between blob and arraybuffer
binary types, so that there’s no need to think deeply about them again.

You could stop reading this book now and have a fairly complete WebRTC

education. But I hope you’ll keep going. In the coming chapters, you’ll be

digging deeper into WebRTC-powered interfaces, especially for accessibility,

and how to optimize streaming media. Plus you’ll learn how to deploy your

WebRTC apps so you can test them out with friends, family, and colleagues

well beyond the cozy comfort of your local network.

But before we get to all that, it’s time to tackle a serious limitation to our

work with WebRTC: so far, we have been limited to connecting exactly two

peers over a WebRTC call. In the next chapter, you’ll have the chance to

seriously level up your skills by establishing WebRTC calls between three or

more peers. Much of the work to come will feel very familiar, but don’t be

surprised if more than a few lightbulbs flicker on above your head about

WebRTC generally when you learn to manage calls with multiple peers. Your

journey continues.

Chapter 5. Streaming Complex Data • 132

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 6

Managing Multipeer Connections

If you’re like me and have a habit of opening way too many browser windows

and tabs while you’re working, you might have encountered mysterious

problems and errors at some point during your peer-to-peer WebRTC work.

Perhaps you thought your app had stopped working, only to discover two

browser windows connected on your app’s namespace already—before you

accidentally connected a third.

But even if you’ve been more careful than that, let’s prove the connection

limits on a peer-to-peer app. Fire up the starter app for this chapter—which

contains peer-to-peer logic and the audio features you built in the last

chapter—by running npm run start and pointing to the same namespace off of

https://localhost:3000/multipeer/ in three browser windows. Join the call in the first

two windows, and ensure that the peer-to-peer connection is successful:

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Then let that evil, interloping third peer join.

What you’d hope would happen, of course, is that suddenly the call will show

all three peers, in all three windows. Magic.

But what really happens is probably even worse than you could’ve imagined:

not only can’t the third peer join the call (that truly would be magical, given

the logic we’ve written so far), but the first two peers have their connection

severed, and the consoles of all three browser windows fill up with new and

exotic errors. What a mess. From two connected peers to no connected peers,

thanks to an unwelcome, evil third peer’s attempt to connect:

However multipeer connections are created and maintained, hoping for code

to suddenly turn magical ain’t it.

Learning from a Failed Peer-to-Peer Call

Still, there are some things to learn about signaling and WebRTC connections

in general from this failed three-way call. Step back and consider what’s hap-

pening when a peer-to-peer call is established between exactly two peers: as

soon as the JavaScript loads, each side of the call creates a single instance of

RTCPeerConnection on the $peer object for the remote peer. That one instance

enables two peers to negotiate a connection with each other over the signaling

channel.

Chapter 6. Managing Multipeer Connections • 134

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

When a third peer’s browser joins the same peer-to-peer namespace as the

first two, there’s a serious problem: each peer has exactly one instance of

RTCPeerConnection to work with, representing exactly one remote peer. When the

signaling channel kicks in, care of the interloping third peer, the two connected

peers’ browsers get hopelessly confused: their connection with each other is

all set, stable, and established. Then suddenly and without warning, the

signaling channel goes berserk for both connected peers, who receive a flurry

of incoming SDP descriptions and ICE candidates.

The logic you’ve written so far happily relays new incoming descriptions and

ICE candidates, because it assumes that any signals will originate from

exactly one remote peer. That’s why you’ll now see errors in the console when

the third peer joins—things like DOMException: Unknown ufrag (76d5a562) on attempts

to add an ICE candidate, or DOMException: Cannot set remote answer in state stable when

ill-fated offers and answers arrive.

In short, the WebRTC logic you’ve built so far operates on something of a

social cliché: three’s a crowd. That logic, stemming from the single instance

of RTCPeerConnection on either side of a call, limits each peer only to ever connect

successfully with exactly one remote peer. Add a third peer to the call, and

suddenly signals will be exchanged wildly. No one knows who to signal to, or

whether incoming signals are even meant for the peer receiving them.

It’s like walking down a busy street and noticing someone waving in your

direction from across the way: as a sociable and generally friendly human,

you instinctively wave back even as you wonder, “Who the heck is that per-

son?” I usually discover too late that the wave was meant for someone else,

naturally, and now I look like an even bigger weirdo than usual for continuing

to wave back at a disinterested stranger. Except someone else, a fellow weirdo

on the stranger’s side of the street, sees me waving—and now they’re waving

back at me. I might try to comfort myself that at least the weirdo torch has been

passed, but my social anxiety will race at full tilt until I can disappear back

into the crowd and get far, far away.

Okay. Enough about my social awkwardness. To build a multipeer WebRTC

application, it’ll be necessary to restructure the fundamental peer-to-peer appli-

cation logic we’ve written so far. Just for starters, each connected peer will

need to know how to create and maintain a separate instance of RTCPeerConnection
for each remote peer that connects. No more random waving strangers on a

call. We’ll also need to ensure that connection negotiation only ever involves

two peers, each working with a specific instance of RTCPeerConnection—no matter

how many peers end up on the call.

report erratum • discuss

Learning from a Failed Peer-to-Peer Call • 135

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Although the finished app will appear to have multiple

peers streaming media to each other all in real time,

each peer must first directly negotiate a connection

with every other remote peer in what’s known as

mesh-network topography as shown in the image to

the right.

In a mesh network, sometimes also called a star net-

work, each node is connected to every other node.

Applied to WebRTC, each of the connections between two nodes must be

negotiated—just as you’ve been doing for one-to-one calls. To create a mesh

network for people connecting over your app, you’ll need to extend your peer-

to-peer foundations in WebRTC to manage the additional complexity that

multipeer calls represent. You’ll do that not by starting from scratch, but by

rewriting the starter peer-to-peer app in www/multipeer/. So let’s get to it.

Working with a Multipeer-Ready Signaling Channel

The first thing that’s needed to prepare the way for multipeer calls is a

reworked signaling channel. We need one that is capable of coordinating the

signals between any set of two peers. The signaling channel we’ve used so far

isn’t capable of that, really. But don’t worry: if you examine the server.js file,

you’ll see a different namespace—mp_namespace—that is set up for multipeer

connections. Let’s look through this code line by line, just like we did in Using

a Lightweight Signaling Channel, on page 27, and use what we learn to

improve upon the logic we’ve already written for one-to-one signaling:

server.js

const mp_namespaces = io.of(/^\/[a-z]{4}-[a-z]{4}-[a-z]{4}$/);

mp_namespaces.on('connect', function(socket) {

const namespace = socket.nsp;

const peers = [];

for (let peer of namespace.sockets.keys()) {
peers.push(peer);

}

// Send the array of connected-peer IDs to the connecting peer
socket.emit('connected peers', peers);

// Send the connecting peer ID to all connected peers
socket.broadcast.emit('connected peer', socket.id);

socket.on('signal', function({ recipient, sender, signal }) {
socket.to(recipient).emit('signal', { recipient, sender, signal });

});

Chapter 6. Managing Multipeer Connections • 136

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/server.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

socket.on('disconnect', function() {
namespace.emit('disconnected peer', socket.id);

});

});

First off, the multipeer signaling channel uses a namespace pattern that’s a

lot harder for an interloper to guess or loop their way through: three groups

of four lowercase letters, a through z, which produce a pattern that looks

something like abcd-efgh-ijkl. Make a mental note that that change in the

namespace pattern will require a revision to the client-side prepareNamespace()
function.

As with the original peer-to-peer signaling channel, this one holds onto the

socket.nsp value in a namespace variable. Then things get more interesting.

Whenever a peer connects on the multipeer namespace, the callback creates

an empty peers array. Socket.IO exposes a JavaScript Map object that tracks

all the clients connected to the namespace.1 We’re interested only in the map’s

keys, which represent the unique IDs for all connected peers on any one

namespace. To build a list of IDs, the signaling channel loops through the

map’s keys and pushes them onto the peers array.

Each peer ID is assigned by Socket.IO on a per-connection basis: Socket.IO

assigns a brand-new ID to each connected peer, each time they connect. So

even returning peers—those disconnecting from and reconnecting to the same

namespace—will always be treated as brand new. Leaving peers are simply

forgotten to history, by decree of the town elders, and their unique IDs never

spoken of again on pain of death.

Continuing onward through the signaling logic, you’ll see that the multipeer

signaling channel emits a new connected peers event—which differs from its

singular counterpart, connected peer. The connected peers event is emitted only

when someone first joins the namespace. The event also transmits some data:

the array of peer IDs for everyone already connected on the namespace.

Anyone already connected to the namespace will be notified of each new

connecting peer, thanks socket.broadcast.emit and a repurposed connected peer
event. The multipeer namespace’s connected peer event now also sends along a

small payload of data containing the ID of the new connecting peer. Skipping

over the signal event for a moment, we can see that the disconnected peer event

includes a similar payload, representing the ID of the disconnecting peer.

1. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map

report erratum • discuss

Working with a Multipeer-Ready Signaling Channel • 137

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Fixing the Peer-to-Peer Signaling Channel

The failed multipeer-call attempt at the beginning of the chapter revealed a huge

weakness in the basic signaling channel you’ve been using so far. A third peer cannot

successfully join a peer-to-peer WebRTC call. But that connection attempt will still

ruin the party for the two peers already on the call. That weakness makes for good

WebRTC book-learnin’, but it’s unacceptable for anything you might deploy to pro-

duction.

If you’re looking to build a true peer-to-peer application, rather than a multipeer one,

you need to add a small fix to this Socket.IO-backed code. In the ‘server.js‘ file, add

this line right below where the signaling channel declares the namespace variable:

// server.js
namespaces.on('connect', function(socket) {

const namespace = socket.nsp;
if (namespace.sockets.size > 2) return;➤

// snip...
}

That line uses the size property on the JavaScript Map object held by namespace.sockets.a

A size value greater than two means there are already two peers using the namespace.

The return statement exits the callback function and quietly prevents any interlopers

from using that particular namespace. That ensures that the two connected peers

can carry on their call without even realizing anyone tried to crash their private, peer-

to-peer party.

a. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size

Destructuring the Signal Event’s Data

So far, so good. Your signaling code in the browser has always listened for

connections and disconnections. But notice the big difference from the peer-

to-peer namespace that can be found on the multipeer signal event. You might

recall that the peer-to-peer signal event looked like this:

// server.js, peer-to-peer namespace
socket.on('signal', function(data) {
socket.broadcast.emit('signal', data);

});

That worked fine on the peer-to-peer namespace, because socket.broadcast.emit
sends the signal to what it assumes is a single other connected peer.

In a multipeer WebRTC application, though, the signaling channel needs to

route each signal to a specific peer. That’s how the mesh-network topography

Chapter 6. Managing Multipeer Connections • 138

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/size
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

of multipeer WebRTC calls gets established: each peer on the call has to

negotiate a connection with every other peer. While the multipeer signaling

channel could continue along the lines of the socket.broadcast.emit route, that

would leave us having to write a lot of thankless client-side logic to instruct

each local peer to ignore signals intended for someone else. The result would

be a lot of noise over the signaling channel—and almost certainly slower

performance for establishing multipeer connections.

Instead of being noisy like that, the multipeer signaling channel uses the

Socket.IO .to() method for routing each signal—an ICE candidate or an SDP

description—only to its intended recipient:

// server.js, multipeer namespace
socket.on('signal', function({ recipient, sender, signal }) {
socket.to(recipient).emit('signal', { recipient, sender, signal });

});

The routing logic on the signal event requires making the multipeer signaling

channel a tad less dumb than its peer-to-peer counterpart. But not by much.

The peer-to-peer signaling channel did nothing more than pass along a chunk

of data containing a signal. The multipeer signaling channel goes a step further

and destructures the data received from the peer sending the signal. The

destructured data will ultimately have recipient and sender components, in

addition to the signal data (again, a description or a candidate).

Note that the signaling channel itself does nothing with the sender value but

send it along. As we’ll see, when it comes time to revise the handleScSignal()
callback in Working with Peer IDs in the handleScSignal() Callback, on page

156, the peer receiving the signal is only interested in the sender value. Although

it can be useful for debugging purposes in the browser, the recipient value is

only needed for the signaling channel to route each signal to the correct

peer—and no one else.

That’s it for the multipeer signaling channel. With a better understanding of

how it works, you can turn now to revising the logic in the browser that trig-

gers and responds to the signaling channel’s events.

Revising the Signaling Logic on the Client

We’re going to follow almost the same process for working up the multipeer

app as we did for the original one-to-one, peer-to-peer app in Chapter 3,

Establishing a Peer-to-Peer Connection, on page 37. You can work from the

starter peer-to-peer app for you to work from in www/multipeer/, which will help

you see more clearly how a peer-to-peer app becomes a multipeer one.

report erratum • discuss

Revising the Signaling Logic on the Client • 139

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Stripping Back Self and Peer

To ease into things, let’s revisit the $self and $peer objects and prepare them

for a multipeer app. By doing this work first, you’ll be able to improve the

signaling-channel logic without filling your JavaScript console with a bunch

of wacky errors coming off of RTCPeerConnection.

In all of your work with WebRTC so far, there has been exactly one self and

one peer on each call. Multipeer by definition means that we need to anticipate

setting up, maintaining, and tearing down connections to one or more remote

peers, even if there is still just one self (thankfully). Unlike a one-to-one call,

the number of connected peers in a multipeer call will change over time—and

can change at any time: connected peers might leave, and new peers might

join. Coordinated as members of a group might be, they’re not going to all

show up and connect to the call in the exact same instant.

Consider the $self object first: we need to get rid of all of its state properties.

Each of them—isPolite, isMakingOffer, isIgnoringOffer, and isSettingRemoteAnswerPending—
will be set instead on a per-peer basis. We’ll soon see that the self side of a

multipeer call might simultaneously be polite with one peer and impolite with

another. For now, delight in the stress-relief of selecting all of that code and

deleting it. There. Feel better? The few things that survived your wrath on

$self are the timeless, reusable, and peer-independent configuration, media,

and features properties:

demos/multipeer/js/main.js

const $self = {
rtcConfig: null,
mediaConstraints: { audio: true, video: true },
mediaStream: new MediaStream(),
mediaTracks: {},
features: {
audio: false,

},
};

From here on out, “timeless, reusable, and peer-independent” are the must-

have qualities for any value stored on $self.

Now it’s the doomed $peer object’s turn to witness the firepower of your armed

and fully operational Delete key. Up to this point, you’ve optimistically created

a new RTCPeerConnection on $peer as soon as your app loaded or the call was

reset. With just one remote peer, that approach worked fine. Not so for mul-

tipeer. Let’s obliterate the $peer object literal entirely. In its place, we’ll create

Chapter 6. Managing Multipeer Connections • 140

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

and assign a new JavaScrip Map object to a plural $peers variable, to reflect

the possibility of multiple peers on the call:

demos/multipeer/js/main.js

const $peers = new Map();

You already saw briefly in Working with a Multipeer-Ready Signaling Channel,

on page 136, that the signaling channel itself uses a JavaScript Map object.

Maps are incredibly useful structures that share features of both arrays and

object literals. We’ll get into maps in greater detail in Initializing Peers as

Needed, on page 150, where we’ll write logic to create a reference to each remote

peer as needed, behind a unique key on the $peers map.

All right. Deleting code is exhilarating. But perhaps now you’re feeling a tinge

of guilt or at least a nagging sense you have gone too far by gutting these

fundamental objects you spent so much time setting up earlier in the book.

It may seem drastic, but it’s necessary: in a multipeer setting, we simply have

no idea going in how many peers might join the call, or when. Two peers might

be connected for several minutes, for example, before a third peer connects.

That means holding off and not creating any instances of RTCPeerConnection
until the local peer actually needs them.

But before we worry about that, let’s get this app talking to the multipeer

signaling channel’s namespace.

Preparing the Multipeer Namespace

The next thing we need to do in the client-side code is revise the prepareName-
space() function to handle the correct pattern for connecting to the multipeer

signaling channel’s namespace. Let’s update the regular expression to match

the one on the server (the three groups of four lowercase alpha characters,

each group separated by a hyphen), and call a function that we’ll write next

to return a random string of alpha characters separated by hyphens:

demos/multipeer/js/main.js

function prepareNamespace(hash, set_location) {
let ns = hash.replace(/^#/, ''); // remove # from the hash
if (/^[a-z]{4}-[a-z]{4}-[a-z]{4}$/.test(ns)) {➤

console.log(`Checked existing namespace '${ns}'`);
return ns;

}
ns = generateRandomAlphaString('-', 4, 4, 4);➤

console.log(`Created new namespace '${ns}'`);
if (set_location) window.location.hash = ns;
return ns;

}

report erratum • discuss

Revising the Signaling Logic on the Client • 141

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Great. The prepareNamespace() function is testing hashes against the correct

regular expression. That function now also calls generateRandomAlphaString(),
which takes a separator argument—the hyphen, in this case—as well as integers

indicating the length of each group. Let’s define this function using rest-

parameter syntax, which you first encountered back in Sharing Features as

Needed, on page 114, to make the function capable of returning as many groups

of letters of whatever length as we’d like:

demos/multipeer/js/main.js

function generateRandomAlphaString(separator, ...groups) {
const alphabet = 'abcdefghijklmnopqrstuvwxyz';
let ns = [];
for (let group of groups) {
let str = '';
for (let i = 0; i < group; i++) {
str += alphabet[Math.floor(Math.random() * alphabet.length)];

}
ns.push(str);

}
return ns.join(separator);

}

This function is pretty flexible, should you decide to work with a different

alpha-namespace pattern in the future. The rest-parameter syntax (...groups)
enables you pass in as many group arguments as you like, of whatever length

you choose. For example, to generate a random Google Meet–style aaa-bbbb-ccc
pattern, you’d call the function like this:

generateRandomAlphaString('-', 3, 4, 3);

That’s pretty slick. But do note the risk of scandal that comes with including

the entire alphabet when generating random alpha strings: you and your

users will eventually discover that generateRandomAlphaString() can have a potty

mouth. The quickest fix for this is an exercise I leave to you, dear reader:

write down all the offensive words you know (gosh, dang, gee whiz, and so

on) and remove their vowels and giveaway consonants from the alphabet string.

Alternatively, if you prefer to have portions of your codebase read like the

script for an episode of Deadwood, you can build yourself a profanity block

list that triggers a fresh call to generateRandomAlphaString(). Whatever your

approach, you’d also need to modify the signaling channel to disallow user-

composed profanities on the namespace. (Not that your gentle, pious users

would ever do anything so uncouth.)

Chapter 6. Managing Multipeer Connections • 142

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Revising the Signaling Callbacks

Now that the client-side JavaScript is capable of connecting to the namespace

for the multipeer signaling channel, let’s return to the stack of signaling

callbacks. Open up registerScCallbacks() and pass in a brand-new callback for

the connected peers event:

demos/multipeer/js/main.js

function registerScCallbacks() {
sc.on('connect', handleScConnect);
sc.on('connected peers', handleScConnectedPeers);➤

sc.on('connected peer', handleScConnectedPeer);
sc.on('disconnected peer', handleScDisconnectedPeer);
sc.on('signal', handleScSignal);

}

Onward to the callback definitions themselves. Start by revising the handleSc-
Connect() callback. We’ll strip it of the establishCallFeatures() function, which we’ll

have to call elsewhere in the signaling events, and capture the peer’s own ID

from the sc object and preserve it on a $self.id property. Let’s also log the $self.id
value to the console:

demos/multipeer/js/main.js

function handleScConnect() {
console.log('Successfully connected to the signaling server!');
$self.id = sc.id;
console.log(`Self ID: ${$self.id}`);

}

Below that, you can create the new, skeletal handleScConnectedPeers() callback

you registered above. It will need to receive the array of already-connected

peers, here as the argument ids, that the signaling channel will send down

with the connected peers event. All this function will do for now is log to the

console a comma-separated list of connected peer IDs:

demos/multipeer/js/main.js

function handleScConnectedPeers(ids) {
console.log(`Connected peer IDs: ${ids.join(', ')}`);

}

Now let’s revisit the handleScConnectedPeer() callback. It also needs to work with

data returned by the signaling channel: the ID of the newly connected peer,

which we’ll pass into the function as an id argument.

In the peer-to-peer logic, all the function body did was set self to polite. We can

strike that line, and instead again temporarily log the ID of the connecting peer:

report erratum • discuss

Revising the Signaling Logic on the Client • 143

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/js/main.js

function handleScConnectedPeer(id) {
console.log(`Newly connected peer ID: ${id}`);

}

Go ahead and make parallel revisions to the handleScDisconnectedPeer() function:

demos/multipeer/js/main.js

function handleScDisconnectedPeer(id) {
console.log(`Disconnected peer ID: ${id}`);

}

That’s it for the skeletal logic needed to work with the multipeer signaling

channel’s events and data. Fire up your server with npm run start and point a

browser to https://localhost:3000/multipeer/. Watch your browser’s address bar and

on-page heading for a properly-formed random namespace containing three

groups of four alpha characters, with each group of characters separated

from the others by a hyphen.

Testing Out the Multipeer Namespace and Callbacks

Now for the preview of things to come: pop open a couple more browser win-

dows, and copy and paste in the namespaced address from the first window.

Be sure to open the console in each window, and observe what happens as

you click the Join button in window after window. Keep in mind we’re only

working with the signaling channel at this point. There are no RTCPeerConnection
objects being created yet, so all the action is in the console:

Chapter 6. Managing Multipeer Connections • 144

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

When a peer first joins the call, a list of the already-connected peer IDs will

be logged to the console. As other peers join, each of their IDs will also be

logged. Now try disconnecting a few of the peers: you’ll also see the IDs logged

in all the other windows for the disconnecting peer. Rejoin, and note that a

brand-new ID is logged in each of the windows still connected to the call. The

rejoining peer will also receive a fresh list of all the IDs for everyone already

on the call.

Awesome. You’ve now got your fundamental signaling callbacks in place to

support establishing multipeer WebRTC calls. You’re observing data logged

to the console from the connected peers, connected peer, and disconnected peer events,

which means you’re correctly handling the data payloads the signaling

channel sends down now, too.

Plenty of revisions remain, of course. We’ll need to do way more with those

peer ID values than log them. We’ll also need to think about which signaling

callbacks should call the establishCallFeatures() function that you removed from

the handleScConnect() callback. And we’ll even need to decide where and when

all the various state properties formerly on $self get set, too, including the

politeness value that you struck from handleScConnectedPeer().

Honestly, is it any wonder that so many developer-help forums have unan-

swered questions on how to connect more than two peers over WebRTC?

You’ll soon be able to go through and respond to all of those posts, and dazzle

the world with your expertise.

All right. Before you put on your cape and fly off to be a multipeer superhero

for the whole Q&A internet, there’s still a lot of work to do. Let’s hold off on

pushing further ahead with the negotiation aspects of the client-side Java-

Script, and return instead to the HTML. (You knew that was coming, didn’t

you?) There you’ll pave the way for JavaScript to generate video elements to

handle the incoming streams from each remote peer. We should also rework

the CSS to display an ever-changing number of video elements on screen. By

attending to these tasks now, you’ll be able to whip up fresh video elements

to go to prove your multipeer WebRTC code works, when the time comes.

Those’ll be a welcome improvement over convincing yourself you’re having

the time of your life squinting at some crummy console output.

Generating Video Structures on the Fly

The peer-to-peer HTML has its own hard-coded values, just like the JavaScript

did on $self and $peer. A single <video id="peer"> element worked fine in a peer-

to-peer call, but it’s not suited to multipeer. Let’s resume our code-deletion

report erratum • discuss

Generating Video Structures on the Fly • 145

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

therapy regimen, and remove the peer video-element completely from the

HTML. And while we’re in the HTML, let’s beef up the semantics for the self

video and structure it in a <figure> element:

<article id="videos">
<h2 class="preserve-access">Streaming Videos</h2>
<figure id="self">➤

<video
autoplay
muted
playsinline
poster="img/placeholder.png">

</video>
<figcaption>➤

You➤

</figcaption>➤

</figure>➤

</article>

The video element remains unchanged except that its id attribute shifts to a

containing <figure> element, which is a solidly accessible structure for present-

ing media. Details about the media can be structured in an associated <figcaption>
element. In a multipeer call, for example, keeping track of everyone’s name

can be a challenge. Later, in Sharing Features over Multipeer Data Channels,

on page 165, we’ll enable users to set their names for display on the screens

of all remote peers. But for now, we’re establishing the markup pattern and

providing a hard-coded “You” in the <figcaption> element on the self side of

the call.

With the peer video element removed from the HTML, flip back over to your

JavaScript and define a new createVideoStructure() function to construct peer

video elements on the fly. You can structure them just like the video element

for self you wrote in the HTML, with a containing <figure>:

demos/multipeer/js/main.js

/**
* User-Media and Data-Channel Functions
*/

function createVideoStructure(id) {
const figure = document.createElement('figure');
const figcaption = document.createElement('figcaption');
const video = document.createElement('video');
const attributes = {
autoplay: '',
playsinline: '',
poster: 'img/placeholder.png',

};
const attributes_list = Object.keys(attributes);

Chapter 6. Managing Multipeer Connections • 146

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

// Set attributes
figure.id = `peer-${id}`;
figcaption.innerText = id;
for (let attr of attributes_list) {
video.setAttribute(attr, attributes[attr]);

}
// Append the video and figcaption elements
figure.appendChild(video);
figure.appendChild(figcaption);
// Return the complete figure
return figure;

}

The createVideoStructure() function takes a single argument, id. Just like you

wrapped the #self video in a <figure> element in the HTML, createVideoStructure()
creates new <figure> and <figcaption> elements along with a <video> element.

The function also contains an object literal with the peer video’s three

attributes—autoplay, playsinline, and poster—that we’d previously set directly in

HTML. Rather than call video.setAttribute() over and over, we iterate over a list

of the attributes object’s keys.2 That’s a convenient structure if you ever need

additional attributes: just add them to the object literal.

Rounding out createVideoStructure(), we set the id value, prefixed with peer-, on

the figure element’s id attribute. The peer- prefix is useful in case any of the

signaling-channel’s ID values would make for an invalid HTML id, which would

be the case for any ID whose first character is a digit. We also set the raw,

unprefixed id as the text in <figcaption>, which will be a useful on-screen

debugging feature until we improve the multipeer app to handle names that

users choose for themselves. The function then appends the newly created

<video> and <figcaption> elements to the <figure> element, which the function

ultimately returns.

Because the createVideoStructure() only returns the figure element, we have to

write logic to attach it to the DOM and set the video’s srcObject value to the

correct incoming peer stream. Let’s tackle both of those issues next by revising

the displayStream() function.

Setting Multipeer Video Streams

Previously, all the displayStream() function did was accept a stream and a selector,

basically acting as a wrapper around document.querySelector(). But now that we’re

presenting dynamically generated video elements wrapped in <figure> elements,

2. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys

report erratum • discuss

Generating Video Structures on the Fly • 147

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object/keys
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

we need to build out this function a bit more—and put the createVideoStructure()
function to work, too.

First off, let’s modify the parameters on displayStream() to take a peer id. For

occasions when displayStream() is used for self, we’ll assign "self" as the default

id (we’ll update the code for such occasions next):

demos/multipeer/js/main.js

function displayStream(stream, id = 'self') {
const selector = id === 'self' ? '#self' : `#peer-${id}`;
let video_structure = document.querySelector(selector);
if (!video_structure) {
const videos = document.querySelector('#videos');
video_structure = createVideoStructure(id);
videos.appendChild(video_structure);

}
video_structure.querySelector('video').srcObject = stream;

}

Inside the function, we build a selector and then check whether it exists in

the DOM. If the needed figure element is undefined because it doesn’t yet exist,

a small if block calls up createVideoStructure() and appends its returned element

to the <article id="videos"> element in your HTML. The function then queries for

the <video> element inside the <figure>, and sets its srcObject to the stream.

Take a minute now and hunt down the function definitions for toggleCam() and

requestUserMedia(), and update their calls to displayStream() to remove the #self
argument that you used to pass in:

demos/multipeer/js/main.js

function toggleCam(button) {

// snip, snip

if (enabled_state) {
$self.mediaStream.addTrack($self.mediaTracks.video);

} else {
$self.mediaStream.removeTrack($self.mediaTracks.video);
displayStream($self.mediaStream);➤

}
}

// (elsewhere in your main.js file...)

async function requestUserMedia(media_constraints) {

$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

// snip, snip

displayStream($self.mediaStream);➤

}

Chapter 6. Managing Multipeer Connections • 148

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That completes the logic for generating and attaching video elements on a

per-peer, as-needed basis. Self videos should now be displayed as expected,

too. Now let’s turn to displaying the videos optimally in whatever screen space

is available, care of a little CSS.

Adding CSS to Display a Grid of Videos

We can’t predict in advance how many videos will need to be presented on

the screen. But we also want to make sure that we’re maximizing the screen

space allotted to videos—regardless of their number. Let’s set up a highly

flexible grid on the videos container:

demos/multipeer/css/screen.css

#videos {
align-self: start;
display: grid;
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
gap: 11px;

}

That CSS is duded up in some surprisingly fancy pants. It sets the #videos
element to display as a grid, with a gap of 11px between each column and row

of videos. The real action is on grid-template-columns, which uses the CSS grid

repeat() syntax to create as many columns as there are video elements.3 The

auto-fit value on repeat() means the grid will include as many columns as it

can without any of them spilling over the <article id="videos"> element that

contains them.

Specifically, rather than squeeze all of the videos onto one row, the minmax()
function specifies that videos must be at least 200px wide,4 but no wider than

one fractional unit (1fr)—meaning that all videos will be sized equally. Thanks

to auto-fit, as video elements are attached to the DOM, any empty 200px

columns in the grid will collapse—allowing the columns that contain videos

to uniformly expand and fill the space. That means that this grid will work

responsively across any viewport size, without us having to fuss over media

queries—a technique that Jen Simmons dubbed intrinsic layout.5

Let’s also set up some styles for the <figcaption> elements. Remember each figure

caption will contain the remote peer ID assigned by the signaling channel, or

the hard-coded “You” value for self. This CSS will present that information

in a slightly transparent overlay at the bottom of each video element:

3. https://developer.mozilla.org/en-US/docs/Web/CSS/repeat()
4. https://developer.mozilla.org/en-US/docs/Web/CSS/minmax()
5. https://aneventapart.com/news/post/designing-intrinsic-layouts-aea-video

report erratum • discuss

Generating Video Structures on the Fly • 149

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/CSS/repeat()
https://developer.mozilla.org/en-US/docs/Web/CSS/minmax()
https://aneventapart.com/news/post/designing-intrinsic-layouts-aea-video
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/css/screen.css

figure {
position: relative;

}
figcaption {
color: #EEE;
background: rgba(16,16,16,0.6);
font-weight: normal;
font-size: 14px;
position: absolute;
bottom: 0;
left: 0;
width: 100%;
padding: 5.5px;

}

All right. With the createVideoStructure() and displayStream() functions set and some

basic CSS in place to display all the video elements in an intrinsic grid, you’ve

now prepared your UI to handle multiple videos as peers join the call. Let’s

get back to the JavaScript in earnest to address the major challenge that

remains: enhancing and revising the call setup and negotiation logic to handle

multiple connecting peers.

Initializing Peers as Needed

Let’s create a new function to populate the $peers map that you created in

Stripping Back Self and Peer, on page 140. The map will maintain per-peer

instances of RTCPeerConnection and the state properties formerly on $self.

At the top of the stack of functions in the Call Features and Reset Functions

part of your main.js file, open up a new function definition for initializePeer().
This function should take two parameters: id, for tracking the peer ID value

returned by the signaling channel, and polite, for assigning a Boolean to indi-

cate politeness:

demos/multipeer/js/main.js

/**
* Call Features & Reset Functions
*/

function initializePeer(id, polite) {
$peers.set(id, {
connection: new RTCPeerConnection($self.rtcConfig),
mediaStream: new MediaStream(),
mediaTracks: {},
features: {},
selfStates: {
isPolite: polite,
isMakingOffer: false,

Chapter 6. Managing Multipeer Connections • 150

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/css/screen.css
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

isIgnoringOffer: false,
isSettingRemoteAnswerPending: false,

},
});

}

As promised, the body of the initializePeer() function resurrects everything we

deleted earlier from the old $self and hard-coded $peer variables. The function

uses a peer ID value to create a key on the JavaScript map object using the

set() method.6 The map’s key takes as its value an object literal with numerous

familiar properties, including connection and selfStates.

The RTCPeerConnection instance on connection receives the configuration value

from $self: values in $self.rtcConfig will be identical for every peer connection (null
for the time being). The new selfStates property maintains its own per-peer

object literal for the state properties you previously stored on $self. In a multi-

peer setup, it’s convenient to track self states alongside their corresponding

connection instance.

Behind the scenes, initializePeer() will structure entries in the $peers map to look

something like this, here showing a get() call on the map with a specific peer ID:

$peers.get('W1MHdVPsbP3JgpwfAAAB');
// Returned value for an example 'W1MHdVPsbP3JgpwfAAAB' key ID:
Object {

connection: RTCPeerConnection { }, // values omitted...
features: Object { audio: false },
mediaStream: MediaStream { }, // values omitted...
mediaTracks: Object { }, // values omitted...
selfStates: Object {
isPolite: true, // or false, depending
isMakingOffer: false,
isIgnoringOffer: false,
isSettingRemoteAnswerPending: false,

}
}

That looks complicated, but it’s meant to illustrate how each peer is structured

as a key-value pair inside the $peers JavaScript map. Don’t worry, though:

you won’t have to fuss over the ID keys manually. The logic you’re writing

will do everything needed to store and access the per-ID data, and you’ll soon

be retrieving those values in your signaling and WebRTC callbacks with the

map’s .get() method as in the example above.7

6. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set
7. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get

report erratum • discuss

Initializing Peers as Needed • 151

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/set
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Map/get
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

In addition to setting and getting peers, we’ll also need to delete them when

they leave the call. Let’s look at how that’s done by revising resetPeer() function,

which must now play the role of the Grim Reaper.

Resetting Peers on Multipeer Calls

Have a look at the existing resetPeer() function definition. In a peer-to-peer

context, it looked like this:

function resetPeer(peer) {
displayStream(null, '#peer');
document.querySelector('#mic-status')
.setAttribute('aria-hidden', true);

peer.connection.close();
peer.connection = new RTCPeerConnection($self.rtcConfig);
peer.mediaStream = new MediaStream();
peer.mediaTracks = {};
peer.features = {};

}

Its logic was all tied pretty closely to both the interface and the hard-coded

$peer instance. For multipeer purposes, you can cut things back pretty hard.

There is no need to continue setting up a new peer connection or any peer

properties, nor to worry about the mic status—which is part of the video

structures you’re now creating on the fly as peers join:

demos/multipeer/js/main.js

function resetPeer(id) {
const peer = $peers.get(id);
displayStream(null, id);
document.querySelector(`#peer-${id}`).remove();
peer.connection.close();
$peers.delete(id);

}

In its revised form, resetPeer() closes the existing peer connection for a particular

ID, and nulls out the associated video stream (be sure you update the argu-

ments on displayStream()). The function then removes the video structure from

the DOM entirely and deletes the references to the now-defunct peer ID from

both the $peers and $self objects.

Having built the initializePeer() function, and revised resetPeer(), we can move onto

the signaling callbacks that actually call them.

Fleshing out the Skeletal Signaling Callbacks

We need to call initializePeer() from within two signaling callbacks, handleScConnect-
edPeer() and handleScConnectedPeers(), that fire in response to peer-connection

Chapter 6. Managing Multipeer Connections • 152

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

events. Both callbacks must now process data payloads containing peer IDs

from the signaling channel.

Let’s start with handleScConnectedPeer(), which works with a single incoming ID.

It should initialize a peer for that ID and establish the call features, too:

demos/multipeer/js/main.js

function handleScConnectedPeer(id) {
console.log(`Newly connected peer ID: ${id}`);
// be impolite with each newly connecting peer➤

initializePeer(id, false);➤

establishCallFeatures(id);➤

}

You might recall that handleScConnectedPeer() will be called by everyone already

connected to the call. By passing in false as the polite argument to the new

initializePeer() function, the peers already on the call will be impolite to each

new connecting peer. (That’s the opposite of what you did for basic peer-to-

peer calls, where the later peer to join was impolite. See the sidebar Changing

Up Politeness in Multipeer Calls, on page 154.)

While we have yet to revise establishCallFeatures(), for the moment, let’s keep going

and revise the handleScConnectedPeers() callback function first. This callback will

require looping through an array of IDs for any peers already connected to

the namespace:

demos/multipeer/js/main.js

function handleScConnectedPeers(ids) {
console.log(`Connected peer IDs: ${ids.join(', ')}`);
for (let id of ids) {➤

if (id === $self.id) continue;➤

// be polite with already-connected peers➤

initializePeer(id, true);➤

establishCallFeatures(id);➤

}➤

}

The ids array contains the IDs of everyone connected on the namespace,

including the newly connected peer. To keep things from getting weird, you

need to filter out $self.id, which you captured inside the handleScConnect() callback.

The handleScConnectedPeers() function uses a small conditional that, when true,

quietly executes a continue statement to skip the current ID ($self’s) and proceed

to the next iteration through the for-loop.8

8. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/continue

report erratum • discuss

Fleshing out the Skeletal Signaling Callbacks • 153

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/continue
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

For all the other peer IDs, handleScConnectedPeers() initializes each peer and

establishes the call features. By setting polite to true on initializePeer(), the newly

connected peer will be polite to everyone already on the call.

Changing Up Politeness in Multipeer Calls

Remember that perfect negotiation requires each connection to have a polite and

impolite peer, as you saw in Establishing the Polite Peer, on page 45. Polite peers will

be able to roll back any offer they’ve already sent in order to accept a clashing

incoming offer from an impolite peer. In multipeer calls, any given peer will play the

polite role with some peers and the impolite role with others.

In peer-to-peer calls, the second peer to join the call—the newbie—was impolite. The

logic in the revised handleScConnectedPeers() function hints at why it’s better to change

things around and make newbies polite in a multipeer call: peers just joining the call

might well receive a large payload of connected-peer IDs and begin acting on them

immediately—before the connected peers are all notified of the newbie on the call.

The newbie’s own signaling logic might also start firing off offers before the connected

peers are ready: the connected peers might not yet have created a new instance of

RTCPeerConnection by the time the newbie starts signaling. Without a properly ID’d

instance of RTCPeerConnection on $peers, there’s nothing for the connected peers to do

with any new incoming signals. The newbie therefore needs to be polite in order to

ditch any offers it sent out eagerly but prematurely.

Establishing Call Features for Multiple Peers

All right. Let’s update the establishCallFeatures() wrapper function that you’re now

calling within the handleScConnectedPeer() and handleScConnectedPeers() signaling

callbacks. While it’s not essential to update the establishCallFeatures() function,

your code will read more sensibly if you change the old peer parameter to id,
which clarifies that it’s peer ID and not a $peer instance the function expects:

demos/multipeer/js/main.js

function establishCallFeatures(id) {
registerRtcCallbacks(id);
addFeaturesChannel(id);
addStreamingMedia(id);

}

The change from peer to id is cosmetic in that case. But the three functions

called from within establishCallFeatures() each need to be reworked to accept ID

values rather than peer instances. We’ll look at registerRtcCallbacks() shortly, in

Restructuring WebRTC Callbacks with Closures, on page 159. But we can go

ahead right now and fix up the other two.

Chapter 6. Managing Multipeer Connections • 154

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

First up, let’s update addStreamingMedia() with a single new line:

demos/multipeer/js/main.js

function addStreamingMedia(id) {
const peer = $peers.get(id);➤

const tracks_list = Object.keys($self.mediaTracks);
for (let track of tracks_list) {
peer.connection.addTrack($self.mediaTracks[track]);

}
}

Here you’re again renaming the peer parameter to id. But a peer variable scoped

to the function restores your existing references to peer by grabbing a specific

peer record from the $peers map. (Get used to that const peer = $peers.get(id);
line—you’ll be writing it a lot.) The rest of the function adds media tracks to

the connection, as before, but now it adds them to a specific peer connection.

The addFeaturesChannel() function will take a pair of fixes. Again, the function

body kicks off by accessing the correct peer from the $peers map. The only

other change you need to address is in the feature-function callbacks: you

need to call displayStream() and pass in the id argument for the video feature:

demos/multipeer/js/main.js

function addFeaturesChannel(id) {
const peer = $peers.get(id);➤

const featureFunctions = {

// snip, snip

video: function() {
// This is all just to display the poster image,
// rather than a black frame
if (peer.mediaTracks.video) {

if (peer.features.video) {
peer.mediaStream.addTrack(peer.mediaTracks.video);

} else {
peer.mediaStream.removeTrack(peer.mediaTracks.video);
displayStream(peer.mediaStream, id);➤

}
}

},
};

// snip, snip

}

And with that, you’ve got all the necessary functions set up for building out

peers as they connect. Let’s shift now to do the opposite, and write logic to

clean up after peers leave the call, too.

report erratum • discuss

Fleshing out the Skeletal Signaling Callbacks • 155

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Managing Leaving Peers

You can get things started in the skeletal handleScDisconnectedPeer() callback,

and drop in a call to the Grim Reaper version of the resetPeer() function that

you worked on above, in Resetting Peers on Multipeer Calls, on page 152:

demos/multipeer/js/main.js

function handleScDisconnectedPeer(id) {
console.log(`Disconnected peer ID: ${id}`);
resetPeer(id);➤

}

That’s literally it: just removing any trace that the peer was ever connected

or even existed in the first place. The ID of the departed sleeps with the fishes.

Now onto the leaveCall() function that’s triggered by clicks on the Leave Call

button. Similar to the handleScConnectedPeers() callback, you need a loop so that

the departing peer can completely obliterate all traces of any peers who were

on the call:

demos/multipeer/js/main.js

function leaveCall() {
sc.close();
for (let id of $peers.keys()) {
resetPeer(id);

}
}

To build this loop, we use the for...of syntax for looping over the Map object’s

iterable keys.9 Within the loop, resetPeer() will be called with a reference to each

peer on the call at the time the departing peer chooses to leave. A real massacre.

All right. You’ve got your multipeer app’s logic set up for initializing and

removing peers. That leaves one more piece of signaling logic to attend to:

processing the descriptions and candidates that come across the signaling

channel and into the handleScSignal() callback.

Working with Peer IDs in the handleScSignal() Callback

The first order of business with the handleSCSignal() callback is to use a slightly

more involved piece of destructuring assignment to work with the new values

returned by the multipeer-capable signaling channel.

As you might’ve guessed back in Working with a Multipeer-Ready Signaling

Channel, on page 136, you now need to access the sender and signal values

9. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of

Chapter 6. Managing Multipeer Connections • 156

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Statements/for...of
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

returned by the signaling channel, as well as the candidate and description values

inside of signal. The parameters for handleScSignal() take on a slightly more com-

plex look compared to the { description, candidate } destructured parameters for

peer-to-peer signaling:

async function handleScSignal({ sender,
signal: { candidate, description } }) {

What that does is destructure both sender and signal, as well as the familiar

candidate and description that signal now contains. Remember the recipient value is

used only by the signaling channel logic on the server, for routing the signal

to the intended peer. The intended peer, of course, is the one actually calling

handleScSignal(), so you can safely omit recipient from the destructuring syntax

on the handleScSignal() callback definition. (That said, if you want to add an

additional level of debugging, you could destructure recipient as well and

compare its value against $self.id and see if they match—and call console.error
with a message if they don’t.)

With the destructured parameters ready for action, you can then set up three

function-scoped variables inside the function:

• id: a reference to the sender value (as it’s the peer behind the received signal

whose ID you need)

• peer: the specific peer instance from the $peers JavaScript Map object

• self_state: the state values for the self side of the call on a peer instance

Put those together, and your handleScSignal() callback should open like this:

demos/multipeer/js/main.js

async function handleScSignal({ sender,
signal: { candidate, description } }) {

const id = sender;
const peer = $peers.get(id);
const self_state = peer.selfStates;

if (description) {
// snip, snip...

So far, so good. But you now have a bit of a tedious task that’s better left

to the find-and-replace feature on your editor of choice: correcting variable

references.

Correcting Variable References

So long as we’re thinking about variables, let’s change all of the old peer-to-

peer $self.is* references to self_state.is* inside of handleScSignal(). If your editor has

report erratum • discuss

Working with Peer IDs in the handleScSignal() Callback • 157

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

a find-and-replace function that you can scope to a code selection, you can

make very quick work of that. Similarly, the old references to $peer must be

changed to reference the new function-scoped peer variable, which differs only

in its lack of a dollar sign from the old $peer global. Run another find and

replace for all instances of $peer inside of handleScSignal() and change them to

peer, taking care not to mess up the dollar sign on the line where you assign

$peers[id] to peer.

Another variable-oriented fix is to add routing to the one call to sc.emit()
appearing inside handleScSignal(). You’ll need to specify values for the recipient
and sender, and tuck the description inside of an object literal assigned to signal:

demos/multipeer/js/main.js

// still inside the handleScSignal callback()

// snip, snip...

if (self_state.isIgnoringOffer) {
return;

}

self_state.isSettingRemoteAnswerPending = description.type === 'answer';

await peer.connection.setRemoteDescription(description);

self_state.isSettingRemoteAnswerPending = false;

if (description.type === 'offer') {
await peer.connection.setLocalDescription();
sc.emit('signal', { recipient: id, sender: $self.id,➤

signal: { description: peer.connection.localDescription } });➤

}
} else if (candidate) {

// snip, snip...

Note the lines of context in that example, showing the changes from references

like $self.isIgnoringOffer to self_state.isIgnoringOffer.

Logging Peer IDs with Failed ICE Candidates

The final improvement to the handleScSignal() callback is diagnostic. Let’s log

the peer ID with any errors in adding ICE candidates when offers aren’t being

ignored. While that is not likely to happen, the presence of such errors can

suggest there might be something the matter with your signaling logic—in

which case you’ll want to rework your way through the previous sections.

But with any luck, you’ll never see any such errors logged:

Chapter 6. Managing Multipeer Connections • 158

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/js/main.js

// still inside the handleScSignal callback()

// snip, snip...
} else if (candidate) {
// Handle ICE candidates
try {
await peer.connection.addIceCandidate(candidate);

} catch(e) {
// Log error unless state is ignoring offers➤

// and candidate is not an empty string➤

if (!self_state.isIgnoringOffer && candidate.candidate.length > 1) {➤

console.error(`Unable to add ICE candidate for peer ID: ${id}.`, e);➤

}➤

}
// snip, snip...

And that’s it. You’ve revised all of your signaling callbacks. To review: your

signaling logic is now capable of initializing and removing peers from the call

as they come and go. You’ve also fixed up how call features are established,

including the functions for adding streaming media to a connection and setting

up a features channel with each peer. And now, you’ve also written the logic

to ensure that any two peers are able to send and receive signals to establish

an RTCPeerConnection with each other. That’s the key to setting up a mesh net-

work with WebRTC.

Take a deep, cleansing breath. Maybe go for a walk around the block. Once

you’re ready to proceed, let’s get down to work on the WebRTC-callback logic,

starting with the callback-registration function that establishCallFeatures() calls:

registerRtcCallbacks().

Restructuring WebRTC Callbacks with Closures

So far, rewriting the peer-to-peer code to work on multipeer calls has been

pretty straightforward. Well, fairly straightforward. Fine—straightforwardish,

the way an alien abduction is straightforward. However you want to spin it,

your work towards a multipeer WebRTC app has required shifting some logic

around on the signaling callbacks and introducing a new id variable to a

number of functions.

By contrast, the revisions you’ll make to your WebRTC callbacks require

rethinking your approach to callbacks entirely, especially how the callbacks

themselves are registered.

report erratum • discuss

Restructuring WebRTC Callbacks with Closures • 159

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Let’s step back and think about peer IDs for a moment: each of your WebRTC

callbacks needs to be associated with a specific peer ID’s RTCPeerConnection
instance. Accessing IDs wasn’t a problem with signaling callbacks: peer IDs

are included in all data returned by the signaling channel’s events. But neither

the RTCPeerConnection object nor the data returned by its events have any access

to peer IDs. And that’s a problem, because unique peer IDs are central to the

way we’re architecting multipeer, mesh-networked calls.

Providing the correct ID value to each WebRTC callback that needs it is a

trickier proposition than it might sound. But it’s not impossible. Let’s start

big-picture and open up the registerRtcCallbacks() function, modify it to take an

id argument that will be passed into the function from within establishCallFeatures(),
and prepare each of its event assignments so that we’re passing in the ID for

a specific peer. Remember that establishCallFeatures() is executed for each peer

on a call, thanks to the logic you wrote a moment ago in Fleshing out the

Skeletal Signaling Callbacks, on page 152:

demos/multipeer/js/main.js

/**
* WebRTC Functions and Callbacks
*/

function registerRtcCallbacks(id) {
const peer = $peers.get(id);
peer.connection
.onconnectionstatechange = handleRtcConnectionStateChange(id);➤

peer.connection
.onnegotiationneeded = handleRtcConnectionNegotiation(id);➤

peer.connection
.onicecandidate = handleRtcIceCandidate(id);➤

peer.connection
.ontrack = handleRtcPeerTrack(id);➤

}

Just like you did with addStreamingMedia(), you’re setting up a function-scoped

peer variable inside registerRtcCallbacks(). But something probably looks off about

those rewritten callback assignments. In Writing Named Functions as Call-

backs, on page 22, you read about how it’s a very big deal to make sure that

callback functions are passed in or assigned by reference, without parentheses.

But here, not only are you calling functions with parentheses, but you’re even

passing each of them an id value. That will blow up all of the peer-to-peer

WebRTC callbacks you wrote previously, which destructured data returned

by the WebRTC events that triggered them.

Chapter 6. Managing Multipeer Connections • 160

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

That’s a big problem: the rules have not changed on callback assignments.

The callbacks assigned to WebRTC events must still reference functions to

be executed when each associated event fires—now with the added complex-

ity of firing on a specific peer.connection instance, too.

What we need to do, then, is restructure all the peer-to-peer WebRTC callback

functions to create closures.10 In other words, each of the existing WebRTC

callbacks must be rewritten so as to return a function when executed. When

a WebRTC event fires, it will execute the returned function, which must be

capable of receiving and acting on the WebRTC event’s data.

Let’s try expressing those abstract ideas as real code. Right below the register-
RtcCallbacks() function definition, find the handleRtcPeerTrack() callback. Think back

to how you wrote that function to display the media streaming in from a single

remote peer:

// main.js, peer-to-peer logic
function handleRtcPeerTrack({ track }) {

console.log(`Handle incoming ${track.kind} track...`)
$peer.mediaTracks[track.kind] = track;
$peer.mediaStream.addTrack(track);
displayStream($peer.mediaStream, '#peer');

}

We must do two things to rewrite that callback to create a closure: first, we’ll

grab the ID argument that’s being passed into handleRtcPeerTrack() from within

registerRtcCallbacks(). And then we’ll change the body of handleRtcPeerTrack() to return

a function—an anonymous but otherwise identical version of the original

callback that you wrote—which will be called when the track event actually

fires the peer connection for that ID value:

demos/multipeer/js/main.js

function handleRtcPeerTrack(id) {
return function({ track }) {➤

const peer = $peers.get(id);➤

console.log(`Handle incoming ${track.kind} track from peer ID: ${id}`);
peer.mediaTracks[track.kind] = track;
peer.mediaStream.addTrack(track);
displayStream(peer.mediaStream, id);

};➤

}

10. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures

report erratum • discuss

Restructuring WebRTC Callbacks with Closures • 161

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Closures
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

If you’ve not worked with closures before, the idea behind them is that the

returned function is capable of holding onto the values of any variables, like

id, from the scope of the outer function: in this case, handleRtcPeerTrack(). The

anonymous function returned by handleRtcPeerTrack() is what’s actually assigned

to the peer.connection.ontrack event property. Note that the anonymous function

is still neatly destructuring the track from the event, too.

In slightly more concrete terms: the new function returned by handleRtcPeerTrack()
must fire on the track event for a specific remote peer. Preserving the reference

to that peer’s ID is made possible by the closure. The ID value makes it pos-

sible to continue to preserve the tracks and stream on the peer’s record in

the $peers map. The peer’s ID itself must also be passed into the displayStream()
function you wrote back on page 148.

In slightly more nerdy terms: the inner anonymous function has access to

the outer function’s lexical scope, including the id value, at the moment the

anonymous function is defined. That’s the magic of closures in JavaScript:

we can preserve custom values for use inside a callback function without

messing with the set structure of arguments passed into the callback at

runtime.

Enough nerding out. Let’s keep going. If you’re still feeling uncertain about

closures, that’s okay. Their behavior should become clearer as you write a

few more. Find the “Reusable WebRTC Functions and Callbacks” area of your

main.js file and rewrite those three callbacks to use closures, too. You can go

in order, and prove to yourself what a champ you are by starting with handleRtc-
ConnectionNegotiation(), which also involves the signaling channel:

demos/multipeer/js/main.js

/**
* Reusable WebRTC Functions and Callbacks
*/
function handleRtcConnectionNegotiation(id) {

return async function() {
const peer = $peers.get(id);
const self_state = peer.selfStates;
self_state.isMakingOffer = true;
await peer.connection.setLocalDescription();
sc.emit('signal',

{ recipient: id, sender: $self.id,
signal: { description: peer.connection.localDescription } });

self_state.isMakingOffer = false;
};

}

Chapter 6. Managing Multipeer Connections • 162

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Here you’re making use of the self states associated with a specific peer ID,

which for the sake of brevity gets its own variable assignment (self_state) for

use in the connection-negotiation callback’s logic.

Beyond that adjustment in how you reference self states, the most significant

change to handleRtcConnectionNegotiation() is on its call to the sc.emit() method. In

the peer-to-peer code, that call looked like this:

// main.js
// snip, snip...

sc.emit('signal',
{ description: $peer.connection.localDescription });

// snip, snip...

But in a multipeer setup, it’s necessary to include the recipient and sender values

for properly routing signals over the signaling channel whenever you call

sc.emit()—just like you did for the handleScSignal() callback in Correcting Variable

References, on page 157. The routing values are made accessible from the

returned anonymous callback function, care of the closure around id.

See? You are indeed a closure champ. You can make quick work of rewriting

the other two reusable WebRTC callbacks as closures, too. They’re less com-

plicated by comparison.

The ICE-candidate callback needs to reference an id for routing each candidate

to the correct peer:

demos/multipeer/js/main.js

function handleRtcIceCandidate(id) {
return function({ candidate }) {
sc.emit('signal', { recipient: id, sender: $self.id,

signal: { candidate } });
};

}

We can also write a diagnostic closure on the connection state-change call-

back. It doesn’t make sense to add a class to the body in a multipeer setting

(all of the changes from multiple peers’ connection states would clobber each

other), but what we can do instead is reference an element and add the con-

nection state there, assuming the element exists. Because this is meant to

be reusable code, let’s opt for a generic peer_element, so that it reads sensibly

even if you build WebRTC applications that do not include video elements as

part of the interface. The connectionstatechange event will first fire immediately,

likely before the peer element has been added to the self side of the call. So

we check for the element’s existence before doing anything with it:

report erratum • discuss

Restructuring WebRTC Callbacks with Closures • 163

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/js/main.js

function handleRtcConnectionStateChange(id) {
return function() {
const peer = $peers.get(id);
const connection_state = peer.connection.connectionState;➤

// Assume *some* element will take a unique peer ID➤

const peer_element = document.querySelector(`#peer-${id}`);➤

if (peer_element) {➤

peer_element.dataset.connectionState = connection_state;➤

}➤

console.log(`Connection state '${connection_state}' for Peer ID: ${id}`);
};

}

When the element exists, the function preserves the connection state in a

data-connection-state attribute, care of the dataset property.11 The camelCased

dataset.connectionState property will automatically convert to a dash-styled data-
connection-state attribute in the DOM. The latest state will always replace any

older state on the data-connection-state attribute.

And with that, all of your WebRTC callbacks are properly using closures to

return id-backed anonymous functions.

Testing Out a Multipeer Call

Now comes the big moment. Go big and open a whole bunch of browser win-

dows, and get them all pointed at the same multipeer namespace. Pull out

your phone or tablet so you can connect an external device or two, too. Try

willy-nilly connecting some of the browsers. Leave and rejoin the call. Listen

to the fans roar on your laptop, an issue we’ll return to in Chapter 7, Managing

User Media, on page 173 soon enough. Watch how every browser window adds

and removes video elements for each peer, as shown in the screenshot on

page 165. Scan through the console messages across different windows to see

what is happening behind the scenes.

Congratulations: this is a monumental achievement. A triumph. At this point,

you have fully mastered your command of the RTCPeerConnection object in the

browser. You’re creating and destroying numerous instances of it at will, and

capitalizing on targeted routes over the signaling channel to ensure that each

peer on the call successfully negotiates a connection with every other peer.

11. https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset

Chapter 6. Managing Multipeer Connections • 164

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/HTMLElement/dataset
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Sharing Features over Multipeer Data Channels

There’s only one significant thing we’ve yet to address on a multipeer call:

data channels. Let’s remedy that. Instead of displaying the IDs returned by

the signaling channel with each peer video, you’re going to create a bit of

interface that lets users enter a username that will be shared with all the

other peers on the call—including those who join the call later.

Let’s start by putting together a small form element in the HTML. The form

will take the place of the hard-coded “You” value that you wrote in Generating

Video Structures on the Fly, on page 145:

report erratum • discuss

Sharing Features over Multipeer Data Channels • 165

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/multipeer/index.html

<article id="videos">
<h2 class="preserve-access">Streaming Videos</h2>
<figure id="self">
<video

autoplay
muted
playsinline
poster="img/placeholder.png">

</video>
<figcaption>

<form id="username-form" action="#null">➤

<label for="username-input" class="preserve-access">Username</label>➤

<input type="text" id="username-input" placeholder="Username" />➤

<button type="submit" id="username-set-btn">Set Username</button>➤

</form>➤

</figcaption>
</figure>

</article>

You can then write a set of styles to present the form and its child elements

to respond to whatever size video elements are currently displaying:

demos/multipeer/css/screen.css

figcaption form {
display: flex;
flex-flow: row wrap;
gap: 5.5px;

}
figcaption form > * {

font-family: inherit;
font-size: inherit;
font-weight: inherit;
flex: 1 0 auto;

}
#username-input {

background-color: inherit;
border: 1px solid #CCC;
color: #EEE;
display: block;
padding: 5.5px;
max-width: 100%;

}
#username-set-btn {

background: rgba(64,64,64,0.8);
color: #EEE;
padding: 5.5px;

}

Chapter 6. Managing Multipeer Connections • 166

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/index.html
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/css/screen.css
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

With the HTML and CSS set for the form, you’ll have an interface that looks

like this:

Now we can wire up the username form’s logic in JavaScript. First, let’s attach

a callback to the username form’s submit event. This will swap out the form

and show the username instead on the self side of the call:

demos/multipeer/js/main.js

/**
* User-Interface Setup
*/

document.querySelector('#username-form')
.addEventListener('submit', handleUsernameForm);

/**
* User-Interface Functions and Callbacks
*/

function handleUsernameForm(e) {
e.preventDefault();
const form = e.target;
const username = form.querySelector('#username-input').value;
const figcaption = document.querySelector('#self figcaption');
figcaption.innerText = username;

}

Now for the awesome part. To send and receive usernames, we’ll use the same

features-channel logic that we built for toggling cameras and mics in Sharing

Features over Data Channels, on page 112.

report erratum • discuss

Sharing Features over Multipeer Data Channels • 167

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

In fact, let’s begin by fixing up how we’re sharing toggle states for cameras

and microphones. We need to couch the old peer-to-peer shareFeatures() call

inside of a loop that goes through each peer ID:

demos/multipeer/js/main.js

function toggleMic(button) {
const audio = $self.mediaTracks.audio;
const enabled_state = audio.enabled = !audio.enabled;

$self.features.audio = enabled_state;

button.setAttribute('aria-checked', enabled_state);

for (let id of $peers.keys()) {➤

shareFeatures(id, 'audio');➤

}➤

}

function toggleCam(button) {

// snip, snip

button.setAttribute('aria-checked', enabled_state);

for (let id of $peers.keys()) {➤

shareFeatures(id, 'video');➤

}➤

// snip, snip

}

Those loops might strike you as inefficient, but it’s a little reminder that your

multipeer call is, in fact, relying on a mesh network. Sending messages over

data channels means sending the same message to each connected peer

separately. (For that reason, some WebRTC developers will repurpose Socket.IO

to serve not only as a signaling channel, but also as the backbone for group

messaging.)

To make that loop work, of course, you’ll need to add an id parameter along

with a familiar line of code to the shareFeatures() function definition:

demos/multipeer/js/main.js

function shareFeatures(id, ...features) {➤

const peer = $peers.get(id);➤

const featuresToShare = {};

if (!peer.featuresChannel) return;

for (let f of features) {
featuresToShare[f] = $self.features[f];

}

try {
peer.featuresChannel.send(JSON.stringify(featuresToShare));

Chapter 6. Managing Multipeer Connections • 168

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

} catch(e) {
console.error('Error sending features:', e);

}
}

Back to the muted status: instead of showing a ham-fisted “Peer is muted”

message, let’s instead show a parenthetical “(Muted)” message next to the

peer’s ID and, in a moment, the peer’s username. We can handle that with a

reusable function we’ll define inside the addFeaturesChannel() function, so it

properly references the correct peer—thanks to our old friend, the closure:

function addFeaturesChannel(id);

const peer = $peers.get(id);

// snip, snip

function showUsernameAndMuteStatus(username) {
const fc = document.querySelector(`#peer-${id} figcaption`);
if (peer.features.audio) {

fc.innerText = username;
} else {

fc.innerText = `${username} (Muted)`;
}

}

}

It selects the correct <figcaption> element for a peer and sets the username (or ID)

along with a possible mute status as the caption’s inner text. We can put this into

action on the existing audio feature function, which will have some ternary-operator

logic to use the peer’s username if it’s been set. Otherwise, it uses the ID:

function addFeaturesChannel(id) {
const peer = $peers.get(id);

const featureFunctions = {
// snip, snip

audio: function() {
const username =

peer.features.username ? peer.features.username : id;
showUsernameAndMuteStatus(username);

},

// snip, snip
}

// snip, snip

}

Now to handle the username case. Back in the handleUsernameForm() function,

you should preserve the username on $self.features.username. Then, again within

report erratum • discuss

Sharing Features over Multipeer Data Channels • 169

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

a small loop over the keys of all the currently connected peers, you’ll call your

shareFeatures() function with both an ID and the feature, 'username', that you

need to share:

demos/multipeer/js/main.js

function handleUsernameForm(e) {
e.preventDefault();
const form = e.target;
const username = form.querySelector('#username-input').value;
const figcaption = document.querySelector('#self figcaption');
figcaption.innerText = username;

$self.features.username = username;➤

➤

for (let id of $peers.keys()) {➤

shareFeatures(id, 'username');➤

}➤

}

Coupled with the little loop inside the handleUsernameForm() callback, shareFeatures()
now fires off the username to all connected peers, too.

Note that the logic that you wrote originally in Sharing Features over Data

Channels, on page 112, particularly the onopen event for the features channel,

ensures that any new peers on the call will receive the username along with

any other features information from every single other peer on the call. You’ve

gotta admit—that’s pretty awesome.

With all the sending logic fixed up, all that’s left is to register a username feature

function for when a username shows up in a feature payload. It will also call

the mute-status-aware showUsernameAndMuteStatus() function:

demos/multipeer/js/main.js

function addFeaturesChannel(id) {

// snip, snip
const featureFunctions = {

// snip, snip

username: function() {➤

// Update the username➤

showUsernameAndMuteStatus(peer.features.username);➤

},➤

// snip, snip

};
}

Chapter 6. Managing Multipeer Connections • 170

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/multipeer/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

And that’s it! You’ve now built out a tightly constructed feature that shares

media-toggle states and the username whenever possible, with all current

and future peers who join the call.

Time to test the feature out. Do your multipeer routine and open up a bunch

of browser windows, and go to town joining the call. Try muting and unmuting

mics and toggling cameras. From there, try coming up with all kinds of differ-

ent usernames. You can even set a username or toggle off the camera before

joining a call, and boom—those features will be shared immediately. Join the

call later in yet another browser window. Note how the usernames and toggled

cameras have already been set appear almost immediately for each remote peer.

Next Steps

Your journey with WebRTC’s core networking techniques and concepts is

effectively complete. You’re now able to do something quite difficult: support

a multipeer call by orchestrating peer connections into a mesh network for

streaming media and sharing arbitrary application data. Of course, the more

connecting peers a call has (not to mention the more popular your WebRTC

app gets), the wider the variety of available cameras and mics and responses

to requests for media permissions your app’s logic will encounter.

In the next chapter, you’ll learn how to detect the availability of user media

devices, which can change even over the life of a single call. You’ll build logic

to address some common device-availability edge cases—from systems that

lack cameras or mics, to browsers that are denied user-media permissions—

that a robust, fault-tolerant WebRTC app must handle. You’ll also learn how

to do some optimization of user media to be more efficient about the bandwidth

and processing power each user-media stream consumes: you might already

have wondered about that as your computer’s fans began to roar in the middle

of testing your multipeer app.

report erratum • discuss

Sharing Features over Multipeer Data Channels • 171

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 7

Managing User Media

When it comes to requesting access to user media—cameras and mics—the

code we’ve written so far has made some optimistic but naive assumptions:

not only have we generally expected that users will grant our apps permission

to access their media devices, but also that there will even be media devices

available for users to grant access to in the first place.

Those assumptions suit us just fine in development. But the challenge in this

chapter is to think about a wide range of far less ideal circumstances that

any WebRTC app will face in the hands of real users. Much of your work along

those lines will focus on the getUserMedia() method, which you haven’t really

touched since Adding Mic and Camera Toggles, on page 98. And even that

was just to make a minor adjustment for requesting microphone access.

In this chapter, we’ll look at how getUserMedia() and related MediaDevices methods

behave under different conditions, including:

• When media devices aren’t available, because there simply is no mic or

camera attached—or because an overzealous system administrator has

blocked access to them at the operating-system level

• When users deny access to media devices, either intentionally or acciden-

tally, in the browser’s media-permissions dialog box that appears after

getUserMedia() has been called

Working in such close proximity to the MediaDevices interface on the Media

Capture and Streams API,1 you’ll discover subtle differences in error states

and messages and media-permissions models in different browsers. Those

differences include how and even whether permissions persist for users

returning to a WebRTC app that they’ve used previously.

1. https://developer.mozilla.org/en-US/docs/Web/API/Media_Capture_and_Streams_API

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/API/Media_Capture_and_Streams_API
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

With logic in hand that addresses those types of conditions and browser dif-

ferences, we’ll then turn our attention to optimizing the media tracks

returning data from user cameras and mics. You’ll develop skills with speci-

fying and applying media constraints objects. Those can be applied either to

an initial call to getUserMedia(), or later, through the applyConstraints() method on

a media track that’s already been returned from getUserMedia().

Adjusting Low-Level WebRTC Objects

Beyond media constraints, it’s possible to reach down to lower-level APIs like the

RTCRtpTransceiver,a RTCRtpSender,b and RTCRtpReceiverc objects to do everything

from try to force the use of a particular CODEC to scale video resolutions or bit rates

up and down manually.

My advice is to avoid the temptation to do this. Your users’ browsers already have

highly tuned, well tested algorithms to respond to shifting network conditions and

overtaxed CPUs. Any custom logic of your own won’t be as good, and might well overlook

certain conditions that will make for a degraded user experience with your apps.

a. https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpTransceiver
b. https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpSender
c. https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpReceiver

The thing to remember throughout this chapter is that there’s only so much

you, as a developer, can do about suboptimal media availability or permis-

sions, let alone limited bandwidth and computing power. Whether a user is

missing a media device, or either can’t or won’t let your app access it, the

result is the same: there’ll be no video or audio (or both) streaming from that

user. Your job is to develop an app that performs the best it can, given a wide

and sometimes regrettable range of circumstances. But hey—that’s the case

for all forms of web development, not just WebRTC.

Determining Device Availability

Let’s look at different possible device availability scenarios and write error-

handling logic that addresses them. As you’ll see, certain scenarios—like a

missing camera, or users denying permission to access a microphone—throw

different errors in Firefox, Chrome, and Safari. The sections below provide tables

documenting browser-specific behavior and errors under different conditions.

The good news is the code you’ve written over all the previous chapters has

avoided tying call-joining logic with media-device permissions and availability:

those are separate code paths, and should remain that way. In other words,

no app should demand that users grant device access as a pre-condition for

Chapter 7. Managing User Media • 174

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpTransceiver
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpSender
https://developer.mozilla.org/en-US/docs/Web/API/RTCRtpReceiver
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

joining a call. It’s entirely possible some users might not even have a camera

or mic to grant access to, anyway. So don’t ice them out, if those users are

still intent on joining.

Detecting Missing Media Devices

We can begin with the most clear-cut case: users without a camera or mic.

They might simply not own one, or possibly they left a cable unplugged. They

might also have a missing or misconfigured driver at the operating-system

level. Whatever the case, it’ll present the same problem to the browser—and

your WebRTC apps.

If you have a device available to test that has no camera or mic, that’s great.

Regardless, you can start beefing up your trusty requestUserMedia() function

with a try/catch statement around the call to getUserMedia(). As a basic diagnos-

tic step, which will be useful for debugging your own apps, log both the error

name and message to the console:

async function requestUserMedia(media_constraints) {

try {➤

$self.media = await navigator.mediaDevices
.getUserMedia(media_constraints);

} catch(e) {➤

console.error(e.name, e.message);➤

}➤

// snip, snip

}

In the absence of an available camera and mic, no browser will display a

permissions dialog on a call to getUserMedia(), which the apps you’ve built call

when your app loads. Despite the lack of a dialog box, every browser’s console

still lights up with errors, as outlined in the following table.

Error Message (e.message)Error Name (e.name)

The object cannot be found here.NotFoundErrorFirefox

Requested device not found.NotFoundErrorChrome

Invalid constraint.OverconstrainedErrorSafari

Table 1—Browser Error Names and Messages for Missing Media Devices

As you can see, Safari is the outlier here. Chrome and Firefox uniformly report

a sensible-sounding NotFoundError. And while it’s justifiable, as a general rule,

to shake your fist at Safari, its OverconstrainedError actually provides an important

clue that there might be more going on with these errors—however they’re

named—that we ought to investigate.

report erratum • discuss

Determining Device Availability • 175

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Recall the media constraints we have been passing to getUserMedia() since

Adding Mic and Camera Toggles, on page 98: { audio: true, video: true }. That object

requests access to both the mic and the camera. But even when a user has,

say, a mic but not a camera, a NotFoundError will be thrown by getUserMedia(), and

no permissions dialog will be shown! Boolean media constraints require users

to have both device types available: browsers are not at liberty to pick and

choose which parts of Boolean constraints they can satisfy. It’s all or nothing.

So despite Safari’s outlier OverconstrainedError here, there’s a significant kernel

of truth in it (one that we will see in action again under different circumstances

later in this chapter): we’re trying to constrain the media in ways that don’t

match against a system lacking a mic or a camera, or both.

Enumerating Available Devices

You can probably already see the problem: it’s senseless to call getUserMedia()
with constraints that reference a type of media device a user might not even

have. But calling getUserMedia() and checking the errors it throws is the only

way we’ve seen so far to detect missing devices. Catch-22 much?

Enter enumerateDevices(), another method on navigator.mediaDevices. With that

method, we can figure out what types of devices, if any, are available before

calling getUserMedia(). And using the information that enumerateDevices() returns,

we can then adjust the media constraints that we pass to getUserMedia().

If we determine that there’s no camera attached, for example, we shouldn’t

even bother passing anything other than video: false for the camera constraint.

That means that we’ll need to modify the media constraints we ultimately

pass to getUserMedia(), based on our best understanding of the state of a given

user’s setup.

Let’s express all of that in code. Start by adding a mediaDevices member to the

$self object. You can use that to track available media devices for easy reference

across your app’s logic. Declare mediaDevices as an object, with audioinput and

videoinput both initialized to empty arrays:

demos/user-media/js/main.js

const $self = {
rtcConfig: null,
mediaConstraints: { audio: true, video: true },
mediaDevices: { audioinput: [], videoinput: [] },➤

mediaStream: new MediaStream(),
mediaTracks: {},

Chapter 7. Managing User Media • 176

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

features: {
audio: false,
video: true,

},
};

Then, in the “User-Media and Data-Channel Functions” area of your JavaScript

file, declare a new asynchronous function, detectAvailableMediaDevices(), that will

await the output of navigator.mediaDevices.enumerateDevices(). Its promise resolves to

an array of available devices, which might be empty if no devices are available.

Available Details on enumerateDevices()

Different browsers report different levels of detail on enumerateDevices(), especially before

your app has secured media permissions. Firefox is the gabbiest browser, spilling a

whole bunch of information without the need of permissions. For example, here are

the members on a MediaDeviceInfo object for a microphone:

{
deviceId: "6Wk1BAnyduwWD9bRlu7HooMPUiyQOM8lEDQhkbyfGhA=",
groupId: "7FrL/njX5GZ8eUSFPdITWwpEMozdm8vzz53pOEBtTug=",
kind: "audioinput",
label: ""

}

After permissions have been granted, Firefox just fills in the label member: { label:
"MacBook Pro Microphone"}.

Both Chrome and Safari are much more tight-lipped. That same microphone will be

reported like this before media permissions have been granted:

{
deviceId: ""
groupId: ""
kind: "audioinput"
label: ""

}

And unlike Firefox, both Chrome and Safari return InputDeviceInfo objects. Firefox’s

MediaDeviceInfo object shows up in Chrome only for output devices, such as headphones

and speakers. Safari does not appear to make use of MediaDeviceInfo objects at all. But

since the structure of those objects is the same, you can reach into them without

having to mind them.

One final difference worth noting: Chrome includes default input devices as separate

but essentially redundant records returned from enumerateDevices. They’re marked by

a deviceId of "default" and a modified label prefixed with Default -, so something like { label:
"Default - MacBook Pro Microphone"}.

report erratum • discuss

Determining Device Availability • 177

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

We’re only interested in devices whose kind value is audioinput or videoinput.
Because Chrome also lists audiooutput for things like Bluetooth headphones,

you’ll need to do a little filtering here. When an audioinput or videoinput is

detected, we push that device’s MediaDeviceInfo object onto the end of the corre-

sponding array for audio or video devices on $self.mediaDevices:

demos/user-media/js/main.js

/**
* User-Media and Data-Channel Functions
*/

async function detectAvailableMediaDevices() {
// Assume there are no devices until we detect them
$self.mediaDevices.audioinput = [];
$self.mediaDevices.videoinput = [];

const devices = await navigator.mediaDevices.enumerateDevices();

for (let device of devices) {
// Only interested in audio and video inputs
const input_kinds = ['audioinput', 'videoinput'];
if (input_kinds.includes(device.kind)) {
$self.mediaDevices[device.kind].push(device);

}
}

}

With that logic written, call detectAvailableMediaDevices() from within the requestUser-
Media() function, where we can now use its collection of detected devices to

refine the original constraints object set on $self.mediaConstraints:

demos/user-media/js/main.js

async function requestUserMedia(media_constraints) {
// Duplicate the media constraints so as to not affect➤

// the original values on $self➤

const refined_media_constraints =➤

JSON.parse(JSON.stringify(media_constraints));➤

➤

// See what devices are available➤

await detectAvailableMediaDevices();➤

➤

// Refine media constraints based on device availability➤

if ($self.mediaDevices.audioinput.length === 0) {➤

// There's no audio device, so ensure that constraint is false➤

refined_media_constraints.audio = false;➤

}➤

if ($self.mediaDevices.videoinput.length === 0) {➤

// There's no video device, so ensure that constraint is false➤

refined_media_constraints.video = false;➤

}➤

Chapter 7. Managing User Media • 178

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

if (!refined_media_constraints.audio &&
!refined_media_constraints.video) {

// If no media is available, we exit, as passing
// { audio: false, video: false } as a constraint
// results in a TypeError
return;

}

try {
$self.media = await navigator.mediaDevices➤

.getUserMedia(refined_media_constraints);➤

// Detect the devices again, now that permissions
// have been granted; this helps capture a value
// on the "label" field on MediaDeviceInfo for
// easier inspection
await detectAvailableMediaDevices();

} catch(e) {
console.error(e.name, e.message);

}

// snip, snip

}

Let’s quickly walk through that new logic. It introduces a new refined_media_
constraints object, which uses a one-two punch of JSON stringification and parsing

to create a copy of the original constraints object. We create a copy so that the

original constraints specified on $self.mediaConstraints remain unaltered (we’ll see

why below, in Detecting Device Changes, on page 182). A set of if conditions then

step into action: If there’s no camera detected, we’ll set the video property to false
on refined_media_constraints. Similarly, if there’s no mic, we’ll set audio to false. And if

there’s neither a video nor an audio input, we’ll make an early exit from the

requestUserMedia() function: there’s no media to request access to, and there’s

nothing at the code level that we can do to change that. Passing { audio: false, video:
false } to getUserMedia() will only end in a TypeError being thrown.

Why Not Use structuredClone()?

While modern JavaScript implementations have access to structuredClone() to duplicate

objects like the media constraints,a that method doesn’t enjoy broad support in older

browsers that nonetheless support WebRTC. The JSON-serialization technique won’t

work for objects whose members aren’t serializable,b but fortunately that’s not the case

for valid media-constraints objects. You are welcome to write detection and fallback

logic for when structuredClone() isn’t available, but that’s beyond the scope of our work here.

a. https://developer.mozilla.org/en-US/docs/Web/API/structuredClone
b. https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringi-

fy#description

report erratum • discuss

Determining Device Availability • 179

https://developer.mozilla.org/en-US/docs/Web/API/structuredClone
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify#description
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON/stringify#description
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Finally, note it’s useful to call detectAvailableMediaDevices() again after getUserMedia().
Once users grant permission to access media, the output of enumerateDevices
will be much more complete, as you read about in Available Details on enu-

merateDevices(), on page 177. That includes filling out the label member, which

will be useful in any user interface you might create around available devices.

Disabling the Mic and Camera Toggle Buttons

At this point, let’s take a moment to update the buttons for toggling the mic

and camera. There is no sense in presenting users with media toggles once

we’ve detected that a particular kind of device isn’t available.

Open up a new function definition for enableOrDisableMediaToggleButtons() near

your other media-toggle functions, such as toggleCam():

demos/user-media/js/main.js

function enableOrDisableMediaToggleButtons() {
const audio_button = document.querySelector('#toggle-mic');
const video_button = document.querySelector('#toggle-cam');

// Set the disabled attribute's value based on the
// available media devices
audio_button.disabled = $self.mediaDevices.audioinput.length === 0;
video_button.disabled = $self.mediaDevices.videoinput.length === 0;

}

Inside that function, we reference the mic and camera toggles in the DOM,

and then set the disabled attribute based on the refined constraints.

You can then call the toggle function inside of requestUserMedia(), before the

early return that exits the function when there are no devices available:

async function requestUserMedia(media_constraints) {

// snip, snip

// Disable or re-enable toggle buttons➤

enableOrDisableMediaToggleButtons();➤

if (!refined_media_constraints.audio && !refined_media_constraints.video) {
// If no media is available, we exit, as passing
// { audio: false, video: false } as a constraint
// results in a TypeError
return;

}

// snip, snip

}

You can then declare a small set of styles in your stylesheet to apply to dis-

abled buttons, using the handy :disabled pseudo-class:

Chapter 7. Managing User Media • 180

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/user-media/css/screen.css

button[aria-checked="false"] {
text-decoration: line-through;
color: white;
background: red;

}
button:disabled {➤

cursor: not-allowed;➤

text-decoration: unset;➤

color: revert;➤

background: revert;➤

}➤

Those styles show a not-allowed cursor (typically a circle with a diagonal crossbar

through it). We unset the text-decoration property, if any, from the aria-checked
="false" selector, in case that has been set. And then we let the browser display

its usual disabled background and text colors with the special CSS revert value.2

You could, of course, define your own styles here—but the browser defaults

are fine, too:

Conditionally Adding Tracks

With requestUserMedia() now robustly handling missing media devices prior to

passing constraints to getUserMedia(), let’s make parallel enhancements to the

logic that adds tracks to the peer connection. No track will be returned for

any media-constraint value of false, so trying to add those tracks will throw

some errors behind the scenes:

2. https://developer.mozilla.org/en-US/docs/Web/CSS/revert

report erratum • discuss

Determining Device Availability • 181

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/css/screen.css
https://developer.mozilla.org/en-US/docs/Web/CSS/revert
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

demos/user-media/js/main.js

async function requestUserMedia(media_constraints) {

// snip, snip

// Hold onto audio- and video-track references
$self.mediaTracks.audio = $self.media.getAudioTracks()[0];
$self.mediaTracks.video = $self.media.getVideoTracks()[0];

if ($self.mediaTracks.audio) {➤

// Mute the audio if `$self.features.audio` evaluates to `false`
$self.mediaTracks.audio.enabled = !!$self.features.audio;
// Add audio track to mediaStream
$self.mediaStream.addTrack($self.mediaTracks.audio);

}➤

if ($self.mediaTracks.video) {➤

// Toggle off the camera if `$self.features.video` evaluates to `false`
$self.mediaTracks.video.enabled = !!$self.features.video;
// Add video track to mediaStream
$self.mediaStream.addTrack($self.mediaTracks.video);

}➤

displayStream($self.mediaStream);
}

All you need to do is see whether a track of a particular type has been returned

from getUserMedia(). If it has, the usual feature-detection logic and call to

addTrack() will run as expected.

Detecting Device Changes

Great. You have built a few solid mechanisms to act on what devices are

available when your app loads, and you’ll save your application from throwing

TypeErrors by ensuring getUserMedia() is never called with a ham-fisted set of

constraints when there’s no mic or camera available. You’re now also only

adding tracks to $self.mediaStream when an available device has returned them.

But there are other cases of device ability to think about: external mics and

cameras can have their cords unplugged by feral toddlers or vengeful cats,

or be plugged back in if they were unplugged previously. Wireless media

inputs can have their connections drop and reconnect, too.

Enter the devicechange event, which fires whenever a device is added to or

removed from a system.3 We can tap into devicechange and try to recover from

a situation where a camera or mic is added to a system after a WebRTC app

loads.

3. https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/devicechange_event

Chapter 7. Managing User Media • 182

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/devicechange_event
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

There’s a whole lot you can do in response to devicechange events. But to keep

things manageable while gaining exposure to some of the event’s power and

use, we are going to write callbacks to take action on this event only in two

cases: when a device is added when no devices were previously available, or

when the only device streaming media is removed.

Noting Browser-Specific Quirks with Device Changes

Some browser-specific quirks are worth noting up front with devicechange,
however. It works in Firefox and Chrome pretty much as expected, firing when

a camera or mic is connected or disconnected. The event will also seem to

fire with a bit of a lag, likely owing to the underlying operating system’s

recognition of the device’s availability. So don’t expect to see a UI change or

console message instantaneously after plugging a device in.

Firefox will not fire the devicechange event while the app’s browser window isn’t

focused. That can be a little maddening if you’ve got the Firefox dev tools

opened up in their own window, and you’re waiting for a diagnostic line to

log onto the console while plugging in or unplugging devices. The event will

fire, though, once focus has returned to the browser window.

The most significant limitation to devicechange shows up in Safari, whose security

policy prevents it from firing the event until after users grant media permis-

sions. Users who load your app in Safari with neither a mic nor a camera

connected initially will have no opportunity to grant the app media permis-

sions. So regrettably for those users, even if they realize after loading your

app they forgot to connect an input device, they’ll need to reload your app in

Safari for their newly connected devices to be recognized. Safari will fire the

event on all changes as expected after media permissions have been granted.

Finally, in a rather useless turn of behavior, Firefox and Chrome will fire

device-change events even if device permissions are blocked at the operating

system or browser level. The reason that that behavior is useless is that once

a user has denied access to your app, you can’t ask for it again. We will look

at denied media permissions in Programmatically Recognizing Denied Media

Permissions, on page 190.

Registering and Debouncing a devicechange Callback

Let’s get down to registering a callback function for devicechange. But we need

to handle this with care. Given the lag noted above, it might seem surprising

report erratum • discuss

Detecting Device Changes • 183

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

that we need to debounce calls to the devicechange callback. (You might recall

that debouncing a function means holding off on executing it until after a

certain period has passed after the last triggering event.)

The trick with devicechange is it will fire based on type of input. So, for example,

a combination external mic and camera will actually cause devicechange to fire

twice (once for audio, once for video), even if it’s a single piece of hardware

being plugged in.

I prefer a serviceable debounce function like this, which you can add to the

other utility functions at the bottom of your JavaScript file:

demos/user-media/js/main.js

function debounce(callback_function, wait_in_milliseconds) {
let timeout;
return (...args) => {
const context = this;
clearTimeout(timeout);
timeout = setTimeout(

() => callback_function.apply(context, args),
wait_in_milliseconds);

};
}

With that in hand, you can register on the devicechange event a handleMediaDe-
viceChange() callback, which we’ll write in a moment:

demos/user-media/js/main.js

/**
* User-Media Setup and Events
*/

requestUserMedia($self.mediaConstraints);

// These events can fire in rapid succession when,
// for example, a camera with built-in mic is connected.
// That's why it's necessary to debounce to 500ms before
// executing the callback. Otherwise, the callback might
// prompt users to access the camera, and then again to
// access the camera and the mic both.
navigator.mediaDevices.ondevicechange = debounce(handleMediaDeviceChange, 500);➤

I’ve opted for a healthy, 500-millisecond period for debouncing the callback.

That might seem a little too generous, but on slower systems that might take

a moment to register both a camera and mic from a single device, this will

save users from being double-prompted by calling requestUserMedia() too soon.

That’ll become clearer once you’ve written your handleMediaDeviceChange() callback.

Let’s do that next.

Chapter 7. Managing User Media • 184

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Building a devicechange Callback

When it’s complete, your handleMediaDeviceChange() callback will respond to two

situations: when a device has been added with none previously available, and

when a device has been removed with no other devices now available.

Let’s start with the first case:

demos/user-media/js/main.js

async function handleMediaDeviceChange() {
const previous_devices =

$self.mediaDevices.audioinput.length > 0
|| $self.mediaDevices.videoinput.length > 0;

// First things first: on any device change,
// update the list of available media devices
await detectAvailableMediaDevices();

const available_devices =
$self.mediaDevices.audioinput.length > 0

|| $self.mediaDevices.videoinput.length > 0;

// Case One: A device has been plugged in and
// no other devices were previously available
if (!previous_devices && available_devices) {
// Request user media as though the app had just been opened,
// but await it so that we can ensure there's media available
// before adding it to the connection
await requestUserMedia($self.mediaConstraints);

for (let id of $peers.keys()) {
addStreamingMedia(id);
shareFeatures(id, 'audio', 'video');

}
}

}

Here, you’re reaching into your $self.mediaDevices object to look for the list of

last-known available devices. As soon as you’ve captured that as a Boolean,

on previous_devices, it’s important to again call detectAvailableMediaDevices(). After

all, devicechange fires whenever there’s been some change in connected devices.

You can then set up a parallel Boolean on available_devices, for use in comparing

the current state with the last known state. If no devices were previously

available but there are devices now, you can make a call to requestUserMedia().
Remember that if your app loaded without any available devices, your

improvements to requestUserMedia() would have exited the function before

reaching the point of calling getUserMedia(), just as you set things up back in

Enumerating Available Devices, on page 176.

report erratum • discuss

Detecting Device Changes • 185

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

However, it’s that call to requestUserMedia() that’s behind the need to debounce

the callback the way you did in the previous section. If a single device registers

first a mic, and then a camera and mic, users would be presented with and

have to respond to two separate media-permissions modals. By debouncing,

you increase the likelihood that a single device will produce a single request

for media permissions, and save your users some annoyance in the process.

With this code in place, if you load your app without a camera attached, you

can join the call without any streaming media. But very shortly after plugging

a device in, you’ll see your stream on the self side of the call, and then on any

remote peers you’ve got connected, too. Sweet.

Responding to Removed Devices on the Callback

When going from no devices to available devices, things were pretty clear cut:

you had to tap into some of the existing logic that you’ve already been using

elsewhere in your app.

But responding to a system that goes from having a camera and mic to no

camera and mic is going to be a little trickier—at least if you want to have

some polish to your app. If you try unplugging a camera now, you will see

the last frame the device captured at the moment of disconnection on both the

self and remote sides of the call, for as long as the call continues to last.

Suboptimal.

Ideally, in the event a device goes missing, there are two things we ought to

do. First, we should null out the stream being displayed on the self side of

the call. That will help suggest to users that their camera connection was

lost, rather than the camera being frozen. And then we should do the same

for any remote peers as well.

The remote case will be a bit trickier. While there is a handsome built-in track
event on RTCPeerConnection, which you first worked with way back in Receiving

Media Tracks, on page 59, that only fires when tracks are added to the peer

connection. When tracks are removed, we need to write custom logic of our

own to communicate that change to the remote peer.

Go ahead and open your handleMediaDeviceChange() function again, and let’s start

by defining the logic that will be needed there. To start with, you’ll reference

a removeStreamingMedia() function that you can define in just a bit:

demos/user-media/js/main.js

async function handleMediaDeviceChange() {
// snip, snip

// Case Two: The current device has been unplugged

Chapter 7. Managing User Media • 186

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

// and there are now no devices available
if (!available_devices) {➤

// Reset all the media properties➤

$self.media = false;➤

$self.mediaTracks = {};➤

$self.mediaStream = new MediaStream();➤

// Toggle off the media buttons, and null out➤

// the self-side stream➤

enableOrDisableMediaToggleButtons();➤

displayStream(null);➤

// Remove tracks from peer connections➤

for (let id of $peers.keys()) {➤

removeStreamingMedia(id);➤

}➤

}➤

}

We’re interested only in there being no devices available. Under that circum-

stance, it’s useful to reset all the media properties and, perhaps optimistically,

create a new MediaStream instance for later use. (Note that that is ordinarily

instantiated when $self is initialized at the top of your JavaScript file.)

With no devices available, it’s also sensible to disable the media-toggle buttons,

and null out the video stream for the self side of the call.

Finally, it’s necessary to loop through all the connected peers, and remove

the streaming media from the now-defunct device from each of those connec-

tions. Let’s look at writing that removeStreamingMedia() function alongside your

trusty addStreamingMedia() function in your JavaScript file.

Removing User Media for Remote Peers

Removing streaming media from a peer connection takes a little finesse and

creativity. Let’s look at and then walk through the complete removeStream-

ingMedia() function—which we will follow up with a slight adjustment to how

the shareFeatures() function works:

demos/user-media/js/main.js

function removeStreamingMedia(id) {
const peer = $peers.get(id);
// Detect the senders on the connection; we need
// them to remove tracks from the peer connection
const senders = peer.connection.getSenders();
const senders_list = Object.keys(senders);
// Loop through the senders, and pull the tracks
// off them, one by one
for (let sender of senders_list) {
const track = senders[sender].track;
if (track) {

report erratum • discuss

Removing User Media for Remote Peers • 187

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

// Remove the track on its associated sender
peer.connection.removeTrack(senders[sender]);

}
}
// Send a 'removeAllTracks' feature to clean things up
// on the receiving peer's side.
shareFeatures(id, 'removeAllTracks');

}

We start, as always, by grabbing a reference to a specific peer by ID. Then

it’s necessary to determine all of the senders on the connection for that peer,

care of the getSenders() method.4 That method returns an array of senders, one

for each type of track on the connection. So, for example, a connection carrying

both audio and video will have two senders: one for audio, and one for video.

We need the sender’s information because that’s an essential argument for

the removeTrack() method.5 That clears tracks from the connections, leaving

things a little cleaner.

But again, there’s no event fired natively by WebRTC to alert remote peers

of a removed track. We have to do that ourselves. At the bottom of the

removeStreamingMedia() function, you can call up your trusty shareFeatures() function

to build your own system for alerting remote peers that the tracks have been

removed from the connection.

Improving the Feature-Sharing Function

When you wrote the shareFeatures() function back in Sharing Features as

Needed, on page 114, the assumption was that a feature name would accom-

pany data on a member on the $self.features object. However, for something like

'removeAllTracks', there’s no real need to store that as data. We need to issue the

feature as something like a custom event or command to all connected peers.

So let’s make a quick adjustment to shareFeatures() that will send any $self.features
data that it has, but also a simple 'true' string value for anything else, including

'removeAllTracks':

demos/user-media/js/main.js

function shareFeatures(id, ...features) {
const peer = $peers.get(id);

const featuresToShare = {};

if (!peer.featuresChannel) return;

4. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/getSenders
5. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/removeTrack

Chapter 7. Managing User Media • 188

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/getSenders
https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/removeTrack
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

for (let f of features) {
featuresToShare[f] =➤

$self.features[f] ? $self.features[f] : 'true';➤

}

try {
peer.featuresChannel.send(JSON.stringify(featuresToShare));

} catch(e) {
console.error('Error sending features:', e);

}
}

That enhancement makes shareFeatures() a little more flexible. You can now

open up your addFeaturesChannel() function, and add a new callback function to

featureFunctions that works with removeAllTracks:

demos/user-media/js/main.js

function addFeaturesChannel(id) {
const peer = $peers.get(id);

const featureFunctions = {
audio: function() {
const username = peer.features.username ? peer.features.username : id;
showUsernameAndMuteStatus(username);

},
removeAllTracks: function() {➤

const tracks_list = Object.keys(peer.mediaTracks);➤

for (let track of tracks_list) {➤

peer.mediaStream.removeTrack(peer.mediaTracks[track]);➤

}➤

// Empty out the media tracks object➤

peer.mediaTracks = {};➤

// Create a brand-new media stream in case tracks➤

// need to be added later➤

peer.mediaStream = new MediaStream();➤

// But null out the display of the media stream➤

// for the time being➤

displayStream(null, id);➤

},➤

// snip, snip

};

// snip, snip

}

The removeAllTracks callback loops through the track and stream records for

the peer that has announced they’ve stopped sending media, much like that

peer did on their own side of the call. Calling displayStream() then nulls out the

video for the remote peer.

report erratum • discuss

Removing User Media for Remote Peers • 189

http://media.pragprog.com/titles/ksrtc/code/demos/user-media/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Excellent. You’ve now got an app that responds to some baseline media-device

availability. As devices are added and removed, your app and the peer con-

nections it’s maintaining respond accordingly. However, we’re still assuming

that users will grant media permissions when asked.

Let’s turn now to a code-free survey of the errors that are thrown when users

deny those permissions.

Programmatically Recognizing Denied Media Permissions

Hard truth: when users, for whatever reason, deny your WebRTC app permis-

sion to access their mic or camera, there’s little you can do in response. Some

users may accidentally hit the Block button in the permissions dialog, or

dismiss it without having explicitly granted or denied permission. Browsers

generally do not make it easy to unblock requested media permissions, and

will often save that as a preference tied to your app’s domain.

Avoid the Permissions API

You may find yourself tempted to employ the Permissions APIa to do a quick check

for whether users have granted your app access previously to their media devices.

However, the camera permissions value on the name property is not implemented in

Firefox, owing to some significant disagreements over privacy and the Permissions

API generally. Unlike Chrome, Firefox does not implicitly grant permission to media

devices on subsequent uses of a WebRTC app.b

At the code level, using the Permissions API will make it very tricky to know whether

you’re dealing with a user who has previously denied permissions, never visited before,

or is simply using Firefox. The end result can end up being a double-nag: your code

might toss up a modal that says, “You need to allow media permissions” at the same

exact time as the permissions modal itself is showing. Great, two things now to

respond to, instead of one.

For that reason, the only fail-safe way to know if someone has granted your app media

permissions is to watch what happens as a result of calling getUserMedia(). In browsers

like Firefox or Safari, that will mean a dialog box shown on every visit, whereas

Chrome—for good or ill—will apply the same permissions response as a user made

previously.

a. https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
b. https://bugzilla.mozilla.org/show_bug.cgi?id=1449783#c1

Chapter 7. Managing User Media • 190

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/API/Permissions_API
https://bugzilla.mozilla.org/show_bug.cgi?id=1449783#c1
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

The purpose of this section, then, is to help you identify different error condi-

tions your app might encounter. Whether and how you handle them is, of

course, up to you. But note that denied permissions are generally a dead end:

you cannot successfully call getUserMedia() again, and other APIs on the naviga-
tor.mediaDevices will become locked down or otherwise unavailable.

Yes, you could nag the user or try to walk them through how to change their

minds and grant permission, but that’s still going to require your app being

reloaded once they make the switch. Additionally, if you do offer tips like that,

they can become a maintenance headache if browsers move things around

or otherwise change how previously denied permissions can be removed or

reset.

Detecting Media Devices Blocked at the Operating-System Level

OS-level device restrictions are typically the result of actions by an overzealous

sysadmin, or perhaps a paranoid user. Either way, specific, intentional actions

have to be taken to configure the operating system to lock things down.

What is tricky about OS-blocked devices is that browsers may still offer up

a media-permissions dialog box, even when the operating system itself will

deny access, regardless of whether a user clicks Allow or Deny. (Ever the

outlier, Safari has such no errors because macOS has no setting to deny

device access to Safari.)

As you can see in the following table, different errors may be thrown from a

doomed dialog box, depending on whether or not a user hits Allow or Block.

If you compare this table with Table 3, Browser Error Names and Messages

for User-Denied Permissions, on page 192, you’ll see that the Block errors are

identical.

Error Message (e.message)Error Name (e.name)

The object cannot be found here.NotFoundErrorFirefox (Allow)

The request is not allowed by the user
agent or the platform in the current
context.

NotAllowedErrorFirefox (Block)

Permission denied by system.NotAllowedErrorChrome (Allow)

Permission denied.NotAllowedErrorChrome (Deny)

––Safari

Table 2—Browser Error Names and Messages for OS-Level Device Blocking

report erratum • discuss

Programmatically Recognizing Denied Media Permissions • 191

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Detecting Media Devices Blocked in the Browser

In contrast to the fairly intentional work required to deny media-device access

at the OS level, the Block button is right there for users to hit—intentionally

or accidentally—when your app requests device access. In what might be cold

comfort to developers, the NotAllowedError is thrown from all browsers, even if

the error messages differ somewhat.

Note that Chrome is the only browser that currently distinguishes between

blocking a request for access and dismissing the modal entirely. But also

note that dismissing the permissions modal (accomplished easily by hitting

the Escape key) is functionally the same as hitting Block. Only by clicking

Allow is device access allowed; anything else results in denied permissions.

Error Message (e.message)Error Name (e.name)

The request is not allowed by the user agent
or the platform in the current context.

NotAllowedErrorFirefox

(Block)

The request is not allowed by the user agent
or the platform in the current context.

NotAllowedErrorFirefox

(Dismiss)

Permission denied.NotAllowedErrorChrome

(Block)

Permission dismissed.NotAllowedErrorChrome

(Dismiss)

The request is not allowed by the user agent
or the platform in the current context,
possibly because the user denied permission.

NotAllowedErrorSafari

(Block)

The request is not allowed by the user agent
or the platform in the current context,
possibly because the user denied permission.

NotAllowedErrorSafari

(Dismiss)

Table 3—Browser Error Names and Messages for User-Denied Permissions

Armed with all of these different error names and messages, you can abso-

lutely go to town in the try/catch statement inside your requestUserMedia()
function. But note that your work there is essentially going to be limited to

informing—and perhaps annoying—your users about the obvious: your app

can’t access their devices, so it will be impossible for them to be seen or heard

by others on the call they’re about to join.

But to address the needs of users who do grant access, let’s turn our attention

now to the media constraints object, and look at how we can refine permissions

requests beyond the Boolean values of { audio: true, video: true}.

Chapter 7. Managing User Media • 192

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Setting and Applying Media Constraints Objects

When passing { audio: true, video: true } to getUserMedia(), you effectively defer to a

given browser’s default settings for audio and video. And it’s quite possible

that those sensible defaults are fine for your app.

But, if you know that you need, for example, videos that run at a smaller or

larger size, or have reasons to adjust things like the frame rate of a video

or the sample rate for audio, the MediaTrackConstraints dictionary is your friend.6

Kind of.

If you look at the compatibility table for the different entries in the constraints

dictionary,7 you will discover that only a handful of properties—height, width,
and frameRate for video, or echoCancellation for audio—are well supported across

all browsers.

And while you can use MediaDevices.getSupportedConstraints() to determine whether

a browser running your app supports a given constraint,8 its reports are little

more than trivia: presented with an unfamiliar constraint, browsers will ignore

it. Note that that is very different behavior from what we saw at the start of

this chapter, where a true value for video was a dealbreaker in the absence of a

camera. That is only the case for Boolean values, not entries in the constraints

dictionary.

So, for example, if you know your app’s UI will never make use of videos

larger than 320 by 240 pixels, you can specify so on $self.mediaConstraints
(alternatively, you can apply constraints at some point in the future by calling

applyConstraints() on a track that has been returned from getUserMedia()):9

const $self = {
rtcConfig: null,
mediaConstraints: {➤

audio: true,➤

video: {➤

height: 240,➤

width: 320➤

}➤

},➤

mediaDevices: { audioinput: [], videoinput: [] },
mediaStream: new MediaStream(),
mediaTracks: {},

6. https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints
7. https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints#browser_compatibility
8. https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getSupportedConstraints
9. https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/applyConstraints

report erratum • discuss

Setting and Applying Media Constraints Objects • 193

https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints
https://developer.mozilla.org/en-US/docs/Web/API/MediaTrackConstraints#browser_compatibility
https://developer.mozilla.org/en-US/docs/Web/API/MediaDevices/getSupportedConstraints
https://developer.mozilla.org/en-US/docs/Web/API/MediaStreamTrack/applyConstraints
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

features: {
audio: false,
video: true

}
};

Note very well that those constraints do not at all guarantee that the video

that comes back will be precisely 320 by 240 pixels. It means only that the

browser applying that constraint will deliver on the closest value it can without

going under what you’ve specified in relaxed constraints like these. We’ll look

in a moment at much more precise constraints, which are never a good idea, in

Avoiding Overconstrained Media, on page 194.

Differing Constraints Between Browsers

If you spend some time playing around with a tool like Mozilla’s Constraints

Exerciser,10 you can get a sense of what’s possible for the given hardware,

operating system, and browser you’re running.

One thing you’ll discover is even when the hardware and OS are the same,

browsers honor constraints differently. For example, passing { video: { height: 200,
width: 200 } } as a media constraint in Firefox will probably return a 4:3 aspect-

ratio video of about 320 pixels wide. Chrome, by contrast, may scale and crop

to return a true 200-by-200 image from the camera.

And that’s an important thing to note: in some browsers, like Firefox, con-

straints are gravitational—meaning that the browser will come as close as

possible to the value you pass in. So something like { video: { height: 1, width: 1 } }
will prompt Firefox to return the smallest video it can, based on the hardware,

camera drivers, and OS running.

But Chrome may very well return a 1-by-1 video, meaning that the constraint

you’re applying won’t work out in the cross-browser fashion you might hope.

So the best advice is to be honest and tolerant with your constraints, and

trust browsers—and your own good code and UI—to do the right thing with

whatever media a browser can deliver.

Avoiding Overconstrained Media

One parting word about media constraints: any constraint that includes min,
max, or exact runs the risk of overconstraining the media you’re trying to access

with getUserMedia(). For example, { video: { width: { min: 1024, max: 1280 } } will cause

10. https://developer.mozilla.org/en-US/docs/Web/API/Media_Capture_and_Streams_API/Constraints#example_con-
straint_exerciser

Chapter 7. Managing User Media • 194

report erratum • discuss

https://developer.mozilla.org/en-US/docs/Web/API/Media_Capture_and_Streams_API/Constraints#example_constraint_exerciser
https://developer.mozilla.org/en-US/docs/Web/API/Media_Capture_and_Streams_API/Constraints#example_constraint_exerciser
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

an error for any camera that isn’t capable of delivering at least 1024-pixel-

wide frames of video.

And remember: just because a persnickety constraint works fine for you and

your setup does not at all mean it will work for others. Overconstrained errors

as listed in Table 4, Browser Error Names and Messages for Overconstrained

Media, on page 195, are not easily recovered from without a lot of forking logic.

So as you figure out the more specific needs of your app, make sure you use

simple scalars like width: 800. Do the web thing, and let browsers adjust as they

are able.

Error Message (e.message)Error Name (e.name)

Constraints could be not satisfied.OverconstrainedErrorFirefox

[empty string]OverconstrainedErrorChrome

Invalid constraint.OverconstrainedErrorSafari

Table 4—Browser Error Names and Messages for Overconstrained Media

Next Steps

You’ve now got a firm grip on getUserMedia() and the types of media constraints

that will give your app a better shot at suiting users’ needs. You’ve learned

how to detect and act on the availability of user media both once your app

has loaded, and as conditions change for users over the life of a call. You’ve

seen the limited options available for handling denied user permissions, but

you are also now equipped with the knowledge needed for tuning your own

apps to respond to those situations in a cross-browser fashion.

In short, your app is ready to make its debut on the open web. In the next

chapter, you’ll conclude your WebRTC journey by deploying your app for real-

world use.

report erratum • discuss

Setting and Applying Media Constraints Objects • 195

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

CHAPTER 8

Deploying WebRTC Apps to Production

Deploying a WebRTC application requires two infrastructural components:

1. As with any web application, you need server space behind a domain you

control. That’s where you’ll host the application’s static files: HTML, CSS,

and JavaScript. The server must also run whatever server-side scripts

are powering your signaling channel.

2. You will also need a STUN server optionally paired with a TURN server

for relaying peer media streams and data when a direct, peer-to-peer

connection is not possible. You can configure your app to use a public

STUN server, or you can run your own. You’ll learn how to do both in this

chapter. You’ll also learn what the heck STUN and TURN even mean.

You can, of course, avoid much of the server setup outlined in this chapter

and deploy your app to a cloud service capable of running your server-side

scripts. The deployable app in this chapter, for example, uses Node.js. But

because WebRTC needs only limited server-side capability to serve your app

and power your signaling channel, you’ll likely find you can do much of the

setup yourself. So we’ll keep things minimal and homespun in this chapter.

To make the advice here applicable to as many server setups as possible, this

chapter assumes only that you’re running your own server, on some flavor

of Linux where you have root or sudo privileges. The server-side commands

and configuration examples here use a stock LTS Debian Linux, but there’s

enough detail to help you locate documentation specific to whatever flavor of

Linux you’re running: Ubuntu, Arch, and so on. We’ll take a very brief run

through a checklist covering a few essential bits of preliminary server setup

in Preparing a World-Ready Server: A Checklist, on page 203.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Prior to deployment, you’ll need to make a few adjustments to your WebRTC

app. You’ll then need to somehow get the app’s files onto your server. Although

you can use plain old FTP or SFTP, you’ll set up Git on your server and con-

figure a post-receive Git hook that runs all the necessary tasks your app requires

each time you deploy. And you’ll deploy by running the git push command on

your development machine.

You’ll learn how to set up the Nginx web server (pronounced “engine ex”) to

serve your apps files, with an HTTPS assist from Let’s Encrypt. Nginx shines

at reverse proxying, which you’ll configure to pass incoming requests—both

for files and signaling—to the server-side scripts that power your WebRTC

app. Tying all the server-side setup together, you’ll install and set up pm2 so

that you can start, monitor, and even automatically restart your WebRTC

app on the server with each fresh deployment.

You’ll finish off your deployment work by installing and configuring Coturn

to power your own personal STUN/TURN server.1 You’ll then update your

app to use your Coturn installation, deploy with another git push to your server,

and ensure that everything is working correctly.

So let’s get to it! We’ll take all of this in manageable steps, and test things

out as we go. To kick things off, you’ll ready your WebRTC app for production.

You’re welcome to use any of the apps you’ve built so far, or follow along with

the demo app in the /deploy/ directory in the book’s companion source code.

Configuring a WebRTC App for Public Deployment

Ever since Setting Up the Peer Connection, on page 42, you’ve worked around

a sad null value on $self’s rtcConfig value. That’s worked fine for developing and

testing out WebRTC apps within the friendly confines of your local network.

But any publicly deployed WebRTC app needs to connect to a STUN server,

which enables a WebRTC app’s users to discover routes to their locations on

the internet (see Set Servers to STUN, on page 199). Users then share that

information with each remote peer over the signaling channel in the form of

additional ICE candidates.

Let’s get things started by returning to the $self object and transform rtcConfig
into an object literal with a single property, iceServers. That property will take

an array of objects, each with information for connecting to a STUN/TURN

server. You’ll begin here by configuring your app’s instances of RTCPeerConnection

1. https://github.com/coturn/coturn

Chapter 8. Deploying WebRTC Apps to Production • 198

report erratum • discuss

https://github.com/coturn/coturn
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Set Servers to STUN

It’s time to expand a few acronyms: STUN stands for Session Traversal Utilities for

NAT—with NAT being yet another acronym (YAA, of course) for Network Address

Translation. NAT is a fundamental networking building-block for routing packets

over complex network topographies. Simplifying a bit, NAT enables all devices on a

private network to share a public IP address, while assigning each device its own private

address behind the network’s NAT gateway. A STUN server makes it possible to dis-

cover routes for network traffic to make its way over the public network and into the

private network, care of NAT, right down to a specific device—a phone, a laptop, or

whatever. That’s essential for WebRTC’s peer-to-peer architecture, where data must

not only move to and from your public IP, but also your private IP.

When a direct peer-to-peer connection isn’t possible, your app will need access to a TURN

server. TURN expands to Traversal Using Relay around NAT: TURN passes media streams

and data-channel traffic from one peer to another over a third-party server. TURN is

often necessary to reach users on networks behind highly restrictive firewalls.

In quick summary: STUN discovers and describes possible network routes to a device,

and TURN provides a server relay between two devices whenever STUN comes up

short and cannot deliver on a usable peer-to-peer route.

to use a publicly available STUN server (in Setting Up Your Own STUN/TURN

Server, on page 214, you’ll configure your app to use your private STUN server):

$self = {
rtcConfig: {
iceServers: [➤

// array of STUN/TURN servers➤

]➤

},
mediaConstraints: { audio: true, video: true },

// snip, snip

}

A STUN server functions something like a GPS satellite. Just like your phone

or other GPS-capable device uses satellites to determine your position on the

planet, your web browser sends a request to a STUN server to determine your

network’s and device’s location on the internet. STUN even includes routing

information to your location: how—and even if—your device can be reached

from beyond your network’s firewall. The STUN server returns some basic

information—like an IP address and port—that assists the browser in gathering

ICE candidates for sharing with a remote peer as part of RTC connection

negotiation, which you first encountered in Building Connection Logic to the

“Perfect Negotiation” Pattern, on page 51.

report erratum • discuss

Configuring a WebRTC App for Public Deployment • 199

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Referencing STUN Servers on the RTC Configuration Object

To start, try configuring your WebRTC app to use one of a handful of established

public STUN servers. A quick web search will turn up lists of such servers, all

of varying quality (the servers and the lists). Google’s public STUN servers

are among the more stable ones available: stun:stun.l.google.com:19302, with

redundant servers at stun1.l.google.com, stun2.l.google.com, stun3.l.google.com—all

prefixed with stun: and suffixed with :19302, for port 19302.

Here is how you can configure $self to use Google’s public STUN servers:

deploy/www/js/main.js

const $self = {
rtcConfig: {
iceServers: [
{ urls: 'stun:stun.l.google.com:19302' },➤

{ urls: 'stun:stun1.l.google.com:19302' },➤

],
},
mediaConstraints: { audio: true, video: true },
mediaDevices: { audioinput: [], videoinput: [] },
mediaStream: new MediaStream(),
mediaTracks: {},
features: {
audio: false,
video: true,

},
};

The urls property accepts either a string, as in the example above, or an array

of strings, each referencing a URL. An array of URLs is more convenient when

you have multiple URLs that share the same credentials, such as for a TURN

server that can be reached from more than one URL (see Configuring and

Enabling Coturn’s TURN Server, on page 217).

Note that the example above includes only the first two STUN addresses that

Google hosts (see Deciding How Many STUN Servers to List, on page 201). As

with any public server, there’s no guarantee these will be available when your

app’s users need to use them. That’s why it’s advantageous to set up and run

your own STUN server, which you’ll learn how to do in Setting Up Your Own

STUN/TURN Server, on page 214. But to deploy and test out your app for the

first time, a public STUN server will do fine. Probably.

Your WebRTC app will now use responses from those STUN servers to help

the browser gather ICE candidates, even in a local development environment.

To prove that point, and to help ensure your app will work in production, you

can log to the console the type of each ICE candidate your handleRtcIceCandidate()

Chapter 8. Deploying WebRTC Apps to Production • 200

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/deploy/www/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Deciding How Many STUN Servers to List

Don’t be tempted to put forward a huge stack of STUN servers in your configuration

object. They’re not like nameservers for DNS lookups, where redundancy can help

ensure a successful lookup: a web browser will reach out to each STUN server that

you’ve listed in your iceServers array. The more servers you list, the longer it will take

for your browser to finish gathering ICE candidates. That can slow down the estab-

lishment of your WebRTC connections.

However, some public STUN servers are reachable on both port 80 and 443. It’s

useful in that case to include both ports in your iceServers array, because extremely

restrictive firewalls might only allow traffic over 443, normally used for HTTPS.

callback encounters—including the STUN server’s server-reflexive ICE candi-

dates, which will have a type of srflx. Candidates gathered by your browser will

have a type of host:

deploy/www/js/main.js

function handleRtcIceCandidate(id) {
return function({ candidate }) {
if (candidate) {➤

console.log(`Handling ICE candidate, type '${ candidate.type }'...`);➤

}➤

sc.emit('signal', { recipient: id, sender: $self.id,
signal: { candidate } });

};
}

If you filter your console output for candidate, you should see something like this:

That output indicates four host candidates, generated by the browser indepen-

dently, plus two srflx candidates, care of Google’s STUN servers. The undefined
candidate represents the empty candidate that indicates no more ICE candi-

dates are available, which you read about way back in Handling Incoming

ICE Candidates, on page 57.

report erratum • discuss

Configuring a WebRTC App for Public Deployment • 201

http://media.pragprog.com/titles/ksrtc/code/deploy/www/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

If you’re also seeing one or more candidates of type srflx in your console, that’s

confirmation enough that your app is correctly using the public STUN server

you specified. If you run into trouble, try examining the output of the STUN

servers you’ve listed in your config with the web-based TrickleICE tool.2

Having configured rtcConfig to contact a public STUN server, you’ve done your

best to make sure your app is ready to venture out, seek its fortunes, and

make its way in the world. Your task now is to take some time and trick out

a server to host it.

Configuring a Server to Host Your WebRTC App

As promised in this book’s opening chapters, you’ve not had to do any server-

side work to speak of. Whenever you’ve run npm start or npm start:demos, however,

you’ve been using a small bundle of server-side scripts in development. They

are minimal, but let’s talk about them briefly, so there’s a little less mystery

surrounding this chapter’s sudden talk of server-side scripting.

Understanding Your App’s Server Requirements

There are a few files to check out in the deploy/ directory. The first is the pack-
age.json file, which includes four dependencies:

"dependencies": {
"express": "^4.18.2",
"http-errors": "~1.6",
"morgan": "~1.9",
"socket.io": "^4.6.1"

}

Just like you’ve run npm install to install those dependencies for working with

the code in this book, you’ll need to do the same on your server.

The other two files to note are server.js and a companion script, scripts/start-server,
which actually fires up the contents of server.js and starts your app listening

on port 3000. You’ll see several require statements at the top of server.js, four

of which reflect the dependencies listed in package.json. Two others require

the native Node.js path and crypto libraries, the latter of which you will read

about in Generating Time-Limited Credentials with your Signaling Server,

on page 219.

What you’ll need to do on the server is very similar to what you’ve already

done on your development machine back in Chapter 1, Preparing a WebRTC

Development Environment, on page 1. But in addition, you’ll need to get a

2. https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/

Chapter 8. Deploying WebRTC Apps to Production • 202

report erratum • discuss

https://webrtc.github.io/samples/src/content/peerconnection/trickle-ice/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

fully-featured web server configured and running, and make sure that it

serves HTTPS using certificates that don’t send browsers into a panic. Let’s

tackle that setup next.

Preparing a World-Ready Server: A Checklist

There’s not enough space to walk through an entire server setup. So consider this

sidebar something like DevOps lite: it points out the essential steps and technologies,

but you’ll need to hunt down the particulars in the documentation for your specific

flavor of Linux.

1. Configure a firewall and fail2ban: If you’re like me, you want to mitigate as many

security risks to your server as possible. As soon as I spin up a new server, I prefer

to lock all its ports down except for 22, for SSH, with something like Uncompli-

cated Firewall, ufw.a You might also want to set up something like fail2ban,b which

will automatically build a restricted list of IP addresses belonging to malicious

users and bots that are standing by 24/7 to hammer away at your server, looking

for a weakness to exploit.

2. Button down SSH: To keep access to your server more secure, it’s a good idea

to set yourself up with a pair of SSH keys. One key is public, which you can

share with the whole world—including your server—and one is private, which

you keep on your development machine and must guard with your life. Or at

least a strong password. The idea is that the password unlocks your key—

granting you access to your server. Read up on how to configure SSHD to allow

only key-based authentication to your server, too.c

3. Install Nginx: You can install Nginx from your Linux’s package manager’s default

sources, or you can get a little fancier and configure your package manager to

read from the package sources that Nginx provides.d While you can opt instead

to use Apache or another web server, Nginx quickly sets up a reverse proxy,

including for WebSocket traffic. We’ll look at setting up a reverse proxy in detail,

later in Configuring Nginx for Reverse Proxies, on page 212.

4. Install Node.js: Your Linux’s package manager probably has an older but service-

able version of Node.js that you can install, but there are other options for

installing more up-to-date versions of Node.js on most Linux distributions.e

a. https://wiki.debian.org/Uncomplicated%20Firewall%20%28ufw%29
b. https://www.fail2ban.org/
c. https://www.ssh.com/academy/ssh/sshd_config
d. https://nginx.org/en/linux_packages.html
e. https://nodejs.org/en/download/package-manager/

report erratum • discuss

Configuring a Server to Host Your WebRTC App • 203

https://wiki.debian.org/Uncomplicated%20Firewall%20%28ufw%29
https://www.fail2ban.org/
https://www.ssh.com/academy/ssh/sshd_config
https://nginx.org/en/linux_packages.html
https://nodejs.org/en/download/package-manager/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Configuring Nginx for Your App’s Domain

Let’s assume you’ve addressed all of the matters in Preparing a World-Ready

Server: A Checklist, on page 203. That list includes having a base Nginx

installation. We’re going to customize Nginx with a per-domain configuration

file and ensure that it works by serving a placeholder HTML file. Having

tested that out, we’ll use Let’s Encrypt to generate the keys and certificates

necessary to serve your app over HTTPS. Finally, we’ll configure Nginx to work

as a reverse proxy—taking HTTPS requests on port 443 and proxying them

to the Express and Socket scripts that power your deployed app on the server.

On most stock installations, Nginx automatically loads any additional config-

uration files it finds in the /etc/nginx/conf.d/ directory. Confirm that you have a

line like this in the default nginx.conf:

include /etc/nginx/conf.d/*.conf;

If that line’s missing, you can add it to nginx.conf yourself, inside the http{}
block—and of course create a conf.d directory adjacent your nginx.conf file.

To keep your per-domain configuration files easily identifiable at a glance,

always name them after your domain. Here I’m creating a configuration file

for a subdomain I control, prag.webrtc.gallery:

$ cd /etc/nginx/conf.d
$ sudo touch prag.webrtc.gallery.conf

Open that new configuration file on your server with a command-line editor

that you’re comfortable with, such as pico or vim, and edit it to look something

like this (be sure to replace the references to prag.webrtc.gallery with your own

domain or subdomain):

server {
server_name prag.webrtc.gallery;

listen [::]:80;
listen 80;

root /var/www/prag.webrtc.gallery/html;
index index.html index.htm;

location / {
try_files $uri $uri/ =404;

}
}

I prefer the old-school comfort of /var/www/ as the shared root path to any

content that’s web available, but choose a location that works for you. Within

your chosen shared root path, be sure to create the path to the /<domain>/html/

Chapter 8. Deploying WebRTC Apps to Production • 204

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

directory you specified in your per-domain Nginx config file. Once you’ve

created the entire path, run chown -R to give your server login ownership of it.

Here, I’m referencing the common shell variable $USER, which should hold the

value of your logged-in username on the server:

$ sudo mkdir -p /var/www/prag.webrtc.gallery/html
$ sudo chown -R "$USER" /var/www/prag.webrtc.gallery

Finally, drop in a temporary index.html file. Its contents will help you to verify

that you’re serving from the correct location:

$ touch /var/www/prag.webrtc.gallery/html/index.html
$ echo "Hello from Nginx" >> /var/www/prag.webrtc.gallery/html/index.html

With that all in place, you’ll need to restart Nginx so that it reads and loads

your domain’s configuration from within /etc/nginx/conf.d/. The command to

restart Nginx will depend on your operating system, but this is the command

on Debian:

$ sudo systemctl restart nginx

Assuming you see no error messages upon restarting (check your log files if

you do), point your browser to your newly configured domain. Again, in my

case, that’s going to be http://prag.webrtc.gallery. You should see your sad little

“Hello from Nginx” message in the browser window. It’ll be identical to what-

ever you echoed out to the placeholder index.html file.

Setting Up Let’s Encrypt Certs

With Nginx properly configured to handle requests on your domain, you can

now set up certificates to serve your app over HTTPS. Let’s Encrypt provides

a tool called Certbot that will do this for you. Certbot provides an interface

with tailored instructions for your web server and Linux distribution.3 They

change somewhat frequently, so I won’t attempt to replicate them here.

Once Certbot’s scripts have run and done their thing, your per-domain Nginx

configuration file will look something like this. The changes that Certbot

makes are highlighted below:

server {

server_name prag.webrtc.gallery;

root /var/www/prag.webrtc.gallery/html;
index index.html index.htm;
error_page 404 /404.html;

3. https://certbot.eff.org/instructions

report erratum • discuss

Configuring a Server to Host Your WebRTC App • 205

https://certbot.eff.org/instructions
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

location / {
try_files $uri $uri/ =404;

}

error_log /var/log/nginx/prag.webrtc.gallery.error.log notice;
access_log /var/log/nginx/prag.webrtc.gallery.access.log main;

listen [::]:443 ssl ipv6only=on;➤

managed by Certbot➤

listen 443 ssl;➤

managed by Certbot➤

ssl_certificate /etc/letsencrypt/live/prag.webrtc.gallery/fullchain.pem;➤

managed by Certbot➤

ssl_certificate_key /etc/letsencrypt/live/prag.webrtc.gallery/privkey.pem;➤

managed by Certbot➤

include /etc/letsencrypt/options-ssl-nginx.conf;➤

managed by Certbot➤

ssl_dhparam /etc/letsencrypt/ssl-dhparams.pem;➤

managed by Certbot➤

}
server {➤

➤

if ($host = prag.webrtc.gallery) {➤

return 301 https://$host$request_uri;➤

} # managed by Certbot➤

➤

listen 80;➤

listen [::]:80;➤

➤

server_name prag.webrtc.gallery;➤

return 404; # managed by Certbot➤

}➤

Certbot should have restarted Nginx for you, but there’s no harm in restarting

it manually yourself, just to be sure. Again, on Debian distributions, that

command will be sudo systemctl restart nginx.

You should now be able to return to your browser and hit your domain from

an https:// address—and again see the “Hello from Nginx” message in the

browser window. If you try to reach the http:// address, that should also open

to https://—care of the second server block that Certbot adds for redirecting

HTTP requests on your domain to HTTPS.

We’ll have some more work to do with the per-domain Nginx configuration

file, but let’s turn now to the task of deploying your app to the server a modern

fancy-pants way, using git push and your own custom remote repository.

Chapter 8. Deploying WebRTC Apps to Production • 206

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Deploying Your App with Git

If you’ve interacted with a Git repo hosted on GitHub or GitLab, you’ve already

worked with remote repositories. Here you’re going to set up a remote Git

repository on your own server, which you can push to or pull from just like

any other remote. All you need is the ability to SSH into your server, which

should have Git installed (see the sidebar Installing and Configuring Git,

Server Side, on page 207).

For anyone new to Git and looking for a complete education, check out Travis

Swicegood’s classic Pragmatic Version Control Using Git [Swi08].

Installing and Configuring Git, Server Side

If your server doesn’t have Git, you’ll need to compile it or install it with your server’s

operating system’s package manager. Aim to install Git version 2.28 or higher.

Once you’ve got Git installed on your server, you should configure your login with

some essential values so that Git doesn’t scream error messages at you. At a minimum,

configure Git on your server by running a set of commands like this, much like you

probably have done on your local development machine:

$ git config --global user.name "Your Name"
$ git config --global user.email "your.email@example.com"
$ git config --global init.defaultBranch "main"

Replace, of course, the values for user.name and user.email with your own name and

email address. The init.defaultBranch property is new as of Git 2.28, and main is now

widely preferred as the default branch name, including on GitHub and GitLab.

Initializing a Bare Repository on Your Server

No need to avert your eyes: a bare repository is a Git repo without a working

tree, meaning you won’t see your files listed in a bare repository. It’s the same

kind of thing you push your work to on GitHub or GitLab.

You can host bare repositories on your server and store them right in your

home directory, perhaps in ~/repos/. It’s convention to create each bare repo

in a subdirectory whose name ends in .git, which gives a false sense that it’s

a file you’re interacting with when you push or pull. To get started, you can

run some commands like this—again using the values for your own custom

domain or subdomain:

report erratum • discuss

Deploying Your App with Git • 207

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

On the server...

$ mkdir -p ~/repos/prag.webrtc.gallery.git
$ cd ~/repos/prag.webrtc.gallery.git
$ git init --bare

With your bare repo in place on the server, switch back to your project’s

directory on your development machine. Initialize Git if you’ve not already

done so, and commit all your work. Then you can add your new bare repo

as a remote. You will reach it via an SSH URL, which has the form ofs

login@domain:repos/bare-repo-name.git. Name the remote something like live or deploy,
if you’d like—especially if you’ve already got another repo called origin at GitHub

or GitLab:

On your local development machine...

$ git remote add deploy \
ksrtc@prag.webrtc.gallery:repos/prag.webrtc.gallery.git

Again, be sure to use your own login, domain, and path to your bare repository.

You might be tempted to push at this point, but before you do, head back to

your server to configure your bare repository to do a bit more than accept the

contents of your repo when you push.

Setting up a Post-Receive Hook

While you can push your repository to your new remote immediately, take a

few minutes first to set up a post-receive hook in Git on your server. Git

supports numerous hooks, each of which can be triggered during the lifecycle

of different Git operations, such as making commits or—in this case—

receiving a push.4

On your server in your bare repository, change into the hooks subdirectory.

You’ll see a whole bunch of files, suffixed with .sample. Any executable script,

written in pretty much any language you like, can be run as a Git hook, so

long as the script’s filename matches Git’s naming conventions. With that in

mind, you’ll need to create a new hook called post-receive, which will be a shell

script executed on the server after a push event. Be sure to change the per-

missions on the post-receive file to make it executable, too:

$ cd ~/repos/prag.webrtc.gallery.git/hooks
$ touch post-receive
$ chmod 755 post-receive

4. https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks

Chapter 8. Deploying WebRTC Apps to Production • 208

report erratum • discuss

https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Again using vim or whatever command-line editor you prefer, open the post-
receive file on the server and edit it to look like this example from the book’s

companion source code:

deploy/scripts/post-receive

#! /usr/bin/env zsh

WEB_ROOT=/var/www
APP_DOMAIN=prag.webrtc.gallery

GIT_REPO=$HOME/repos/$APP_DOMAIN.git
TMP_GIT_CLONE=/tmp/$APP_DOMAIN
DEPLOYED_APP=$WEB_ROOT/$APP_DOMAIN/app

git clone $GIT_REPO $TMP_GIT_CLONE
cd $TMP_GIT_CLONE
npm install
rm -rf $DEPLOYED_APP
mv $TMP_GIT_CLONE $DEPLOYED_APP
exit

Be sure to set both the WEB_ROOT and APP_DOMAIN variables to match what you’ve

set up on your server and included in your Nginx per-domain configuration file.

After initializing a set of variables, the script clones the bare repository into

a temporary location on your server, runs npm install to install the packages

and dependencies referenced in package.json, and then removes the existing

copy of the deployed app before moving the new copy into place. In short, it’s

all the commands you’d otherwise manually run to install your dependencies

and move the app into place.

Testing Out Your Post-Receive Hook

With the script in place, return to your local machine and run git push deploy
main, assuming you have used deploy as the name for your remote. You’ll see

output in your terminal similar to this:

$ git push deploy main
Enumerating objects: 22, done.
Counting objects: 100% (22/22), done.
Delta compression using up to 8 threads
Compressing objects: 100% (16/16), done.
Writing objects: 100% (22/22), 39.27 KiB | 13.09 MiB/s, done.
Total 22 (delta 2), reused 0 (delta 0), pack-reused 0
remote: Cloning into '/tmp/prag.webrtc.gallery'...
remote: done.
remote:
remote: added 72 packages, and audited 73 packages in 6s
remote:

report erratum • discuss

Deploying Your App with Git • 209

http://media.pragprog.com/titles/ksrtc/code/deploy/scripts/post-receive
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

remote: found 0 vulnerabilities
To prag.webrtc.gallery:repos/prag.webrtc.gallery.git
* [new branch] main -> main

Back on the server, look at your application’s deployed location. You should

see your app’s files there, all ready to go.

The only thing the post-receive script doesn’t do is start your app, the way that

npm start has done for you when you’re in development. But rather than man-

ually change directories to your app and run npm start, let’s automate that

process with pm2, which will start and monitor your app—and even restart it

automatically on fresh deploys.

Monitoring Your App with PM2

PM2 is a process manager written using Node.js.5 To install it on your server,

you’ll need to run this command, possibly prefixed with sudo (see the sidebar

Installing Global NPM Packages without Sudo, on page 210):

$ npm install -g pm2

Installing Global NPM Packages without Sudo

If you’re like me, you probably get a little nervous thinking about invoking sudo along

with a language’s package manager. Who knows what evil lurks in those dependencies?

Fortunately, it’s possible to configure npm to use a different, non-privileged location

for storing global packages (the -g flag on npm install triggers a global installation).

For example, you can run:

$ mkdir ~/.npm-packages
$ npm config set prefix $HOME/.npm-packages

You’ll then need to add the location $HOME/.npm-packages/bin to the $PATH variable in your

shell’s startup scripts, which are in a file like .bashrc or .zshrc. Adding these lines to the

bottom of your startup file should do the trick:

Add global npm packages to PATH
NPM_PACKAGES="$HOME/.npm-packages/bin"
export PATH="$NPM_PACKAGES:$PATH"

After you add those lines, don’t forget either to exit and restart your terminal session

or run source with the path to your startup file, something like source ~/.zshrc. Then you

can install and execute global npm packages like PM2 without sudo.

5. https://pm2.keymetrics.io/

Chapter 8. Deploying WebRTC Apps to Production • 210

report erratum • discuss

https://pm2.keymetrics.io/
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Double check that PM2 is installed and available by asking for its version:

$ pm2 --version
5.2.0

Go ahead now and change directories to where your app has been deployed.

In my case, that’s /var/www/prag.webrtc.gallery/app. We’ll pass the name webrtc to
the PM2 --name option to make it a little easier to reference this specific app

in subsequent PM2 commands:

$ cd /var/www/prag.webrtc.gallery/app
$ pm2 start ./scripts/start-server --name "webrtc" --watch
[PM2] Starting /var/www/prag.webrtc.gallery/app/scripts/start-server
[PM2] in fork_mode (1 instance)
[PM2] Done.

| id | name | mode | ⊚ | status | cpu | memory |

| 0 | webrtc | fork | 0 | online | 0% | 6.2mb |

Each row of boxes reveals information about your running apps. You can

check on the status of your apps again later by running pm2 status. For more

detailed information, use the name of your app with the show subcommand,

like pm2 show webrtc. That will even tell you the Git commit hash for your app

as currently deployed. Fancy!

With your app now running, try using curl with the -I flag on your server to hit

the local URL http://127.0.0.1:3000 and print the response headers:

$ curl -I http://127.0.0.1:3000/
HTTP/1.1 200 OK
X-Powered-By: Express
Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Thu, 21 Apr 2022 18:42:09 GMT
ETag: W/"4bc-1804d6e8398"
Content-Type: text/html; charset=UTF-8
Content-Length: 1212
Date: Sun, 22 May 2022 17:01:25 GMT
Connection: keep-alive
Keep-Alive: timeout=5

Great. Now that you’ve proved the app is running at http://127.0.0.1:3000/ on your

server, we need to return to the per-domain Nginx configuration file for

your app’s domain and set up a reverse proxy.

report erratum • discuss

Monitoring Your App with PM2 • 211

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Configuring Nginx for Reverse Proxies

The output from curl suggests that requests seem to be working fine. But to

avoid forcing your users to pass high-numbered ports around with your

chosen domain, like webrtc.example.com:3000, it’s time to put Nginx to work as a

reverse proxy.

Historically, web proxies work on the user’s side, taking a web request and

passing it along to a standard port on another web server. Nginx functions

as a “reverse” proxy because it moves in the opposite direction on the server’s

side. That is, a reverse proxy processes requests coming in over HTTPS/port

443 on your domain and routes them on your server to a private address like

localhost:3000.

Open up your per-domain configuration file inside of /etc/nginx/conf.d/. You can

comment out the current location directive or modify it in place to look like this:

server {

Listening, SSL things (snipped)

location / {
proxy_pass http://127.0.0.1:3000;➤

proxy_http_version 1.1;➤

proxy_set_header Host $host;➤

proxy_set_header Upgrade $http_upgrade;➤

proxy_set_header Connection 'upgrade';➤

proxy_cache_bypass $http_upgrade;➤

}
}

What all that does is take incoming requests on HTTPS/port 443 and pass

them, using proxy_pass, to your app’s localhost URL on port 3000. The proxy

takes place over HTTP 1.1, with the host for the original request getting passed

along, too. The last three lines, which set two headers (Upgrade and Connection)
and bypass the proxy cache, make it possible for users to hit your signaling

channel using the wss:// protocol over WebSockets.6 Importantly, proxy_cache_
bypass ensures that upgraded requests will not be served from a cache—which

is precisely what you want for users interacting with your signaling channel.

Once you restart Nginx, all requests coming into your domain should now be

passed along to your app running on port 3000. You can again use curl -I. But

this time, reference the actual domain where you expect to be serving your app:

6. http://nginx.org/en/docs/http/websocket.html

Chapter 8. Deploying WebRTC Apps to Production • 212

report erratum • discuss

http://nginx.org/en/docs/http/websocket.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

$ curl -I https://prag.webrtc.gallery/
HTTP/1.1 200 OK
Server: nginx
Date: Sun, 22 May 2022 17:30:52 GMT
Content-Type: text/html; charset=UTF-8
Content-Length: 1212
Connection: keep-alive
X-Powered-By: Express➤

Accept-Ranges: bytes
Cache-Control: public, max-age=0
Last-Modified: Thu, 21 Apr 2022 18:42:09 GMT
ETag: W/"4bc-1804d6e8398"

That doesn’t look terribly impressive, given what you’ve actually accomplished,

but the X-Powered-By: Express header proves you’re now serving responses to

reverse-proxied requests from your deployed WebRTC app.

You can now confidently open your web browser of choice, and hit your same

public URL again (note that your browser might have cached your test index.html
page, so you might need to do a hard refresh):

report erratum • discuss

Configuring Nginx for Reverse Proxies • 213

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Go ahead now and try to establish a connection with yourself. If you have a

phone or other device, try switching off Wi-Fi and joining the connection from

your provider’s cell network. Better yet, if you have any friends around to test

this with you, send along your URL and have a nice little chat about how

awesome you are for building and deploying the very app you’re talking

through!

Fantastic. This is another major accomplishment. Once you’re done with your

call, come on back and we’ll get to the last major remaining task in the book:

setting up your own STUN/TURN server, so that your deployed app doesn’t

rely on a public STUN server to function.

Setting Up Your Own STUN/TURN Server

With your deployed app now working as expected, let’s turn to one more task

(pun intended): installing and configuring Coturn to power your own STUN/

TURN server.7 Coturn is the most prominent open-source STUN/TURN server,

being descended from the TURN server project that accompanied the TURN

7. https://github.com/coturn/coturn

Chapter 8. Deploying WebRTC Apps to Production • 214

report erratum • discuss

https://github.com/coturn/coturn
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

specification, RFC 5766.8 Adventurous readers might also want to have a look

at the newer eturnal project,9 but we’ll stick with the tried-and-true Coturn

project here.

Coturn packages are available for Debian10 and Arch Linux.11 The Coturn

install guide will walk you through compiling Coturn for other distributions.12

On systems like Debian, Coturn’s installation is no different from any other

package. Take the time to first update and upgrade your system before

installing Coturn:

$ sudo apt update
$ sudo apt upgrade
$ sudo apt install coturn

When you install Coturn, you’ll likely see a few noteworthy lines appear in

your terminal:

Adding group `turnserver' (GID 112) ...
Done.
Adding system user `turnserver' (UID 106) ...
Adding new user `turnserver' (UID 106) with group `turnserver' ...
Not creating home directory `/'.
snip, snip
Processing triggers for ufw (0.36-7.1) ...
Rules updated for profile 'WWW Full'
Skipped reloading firewall

Coturn creates its own user and group, turnserver, to run the Coturn process.

Debian will start the Coturn process automatically after a successful instal-

lation, care of systemctl. Check your own Linux distribution to see whether you

need to start Coturn manually.

If you’re running ufw, the Uncomplicated Firewall, you’ll see post-installation

lines about updates to the WWW Full profile. In addition to that, Coturn also

adds its own profile in /etc/ufw/applications.d/turnserver. That file contains these

lines:

[Turnserver]
title=Coturn Turnserver
description=Free open source implementation of TURN and STUN Server
ports=3478,3479,5349,5350,49152:65535/tcp| \

3478,3479,5349,5350,49152:65535/udp

8. https://datatracker.ietf.org/doc/html/rfc5766
9. https://eturnal.net/
10. https://tracker.debian.org/pkg/coturn
11. https://archlinux.org/packages/community/x86_64/coturn/
12. https://github.com/coturn/coturn/blob/master/INSTALL

report erratum • discuss

Setting Up Your Own STUN/TURN Server • 215

https://datatracker.ietf.org/doc/html/rfc5766
https://eturnal.net/
https://tracker.debian.org/pkg/coturn
https://archlinux.org/packages/community/x86_64/coturn/
https://github.com/coturn/coturn/blob/master/INSTALL
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Those are the ports and ranges that must be open for Coturn to run properly

under its default configuration. If you use iptables or another firewall, be sure to

open access to the ports and ranges listed in the Turnserver group above. If

your server runs ufw, you can allow everything in the Turnserver group by running:

$ sudo ufw allow "Turnserver"

Just to ensure that the new Turnserver rules are in effect, you can reload ufw
manually by running sudo ufw reload.

Testing Out the Coturn STUN Server

You can test out your Coturn installation on your app running in development,

just like you did with the public STUN servers in Referencing STUN Servers

on the RTC Configuration Object, on page 200. Alternatively, you can open up

the Trickle ICE test page, and enter your server’s information. Don’t forget to

include both the stun protocol and the default STUN port, 3478. Here is an

example of output returned by the STUN server I set up at a separate sub-

domain, coturn.webrtc.gallery:

Chapter 8. Deploying WebRTC Apps to Production • 216

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

At the bottom of that image are server-reflexive candidates, type srflx, indicating

that the STUN server is doing its job. Note that that image was captured while

I was connected to a VPN, not only to keep my actual IP address out of the

screenshot—but also to show that STUN can work even in a properly config-

ured VPN environment.

If you’re seeing similar server-reflexive candidates in your test, congratulations!

You’ve now got your STUN server configured and running properly. That will

enable most users to successfully connect over your app. But to ensure the

same for all users, including those behind restrictive firewalls, let’s look at

how to go about setting up Coturn to act as a TURN server.

Configuring and Enabling Coturn’s TURN Server

Two steps are required to enable Coturn’s TURN server functionality. First,

the TURN server must be enabled in the system startup scripts that accom-

pany Coturn. On Debian systems, you accomplish that by modifying the file

at /etc/default/coturn and uncommenting the line that reads TURNSERVER_ENABLED=1,
making the file look like this:

#
Uncomment it if you want to have the turnserver running as
an automatic system service daemon
#
TURNSERVER_ENABLED=1

The second step is to provide some kind of credential mechanism. STUN works

reliably without any username or password. TURN servers are a different

matter: unlike the simple requests and responses from STUN servers, TURN

relays all peer-to-peer traffic, including user-media streams. That means that

TURN servers can also intercept streaming media. So even if you’re cool with

skipping credentials (please don’t be), browsers will refuse to connect to a

TURN server unless you supply credentials for it.

Coturn supplies a number of different credential mechanisms, including long-

term and time-limited credentials. It also offers database-backed solutions

that are useful if you already have a means for providing user accounts and

authentication. But that’s not the case here.

Long-term credentials are easiest to set up, as they require nothing more

than setting a user= option in the /etc/turnserver.conf file to a USERNAME:PASSWORD
value. Go ahead and add one. While you’re there, add a fingerprint line, which

configures Coturn to play nicely with WebRTC by fingerprinting all STUN and

TURN messages:

report erratum • discuss

Setting Up Your Own STUN/TURN Server • 217

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

in /etc/turnserver.conf
user=testingonly:topsecret
fingerprint

That sets a testingonly user with a password of topsecret. That will be enough to

ensure your TURN server is running properly, but note that long-term creden-

tials are terrible for security. Anyone clever enough to look at your WebRTC

app’s JavaScript file would see your long-term credentials, plain as day:

$self = {
rtcConfig: {
iceServers: [
{

urls: 'stun:coturn.webrtc.gallery:3478',
},
{➤

urls: 'turn:coturn.webrtc.gallery:3478',➤

username: 'testingonly',➤

credential: 'topsecret'➤

}➤

]
},
mediaConstraints: { audio: true, video: true }

}

That’s all someone would need to run wild using your TURN server and hike

up your bandwidth bill to a level that would eclipse the national debt. But

for testing purposes, this is still enough to give things a spin. We’ll improve

this in a bit using your signaling channel in conjunction with the time-limited

credentials mechanism in Coturn.

Testing Out the Coturn TURN Server

You can test out your Coturn TURN server on your app running in development,

just like you did with the public STUN servers in Referencing STUN Servers on

the RTC Configuration Object, on page 200, or you could again revisit the Trickle

ICE test. In either case, be sure to prefix your URL with turn:, like turn:coturn
.webrtc.gallery. This time, you’re going to be looking for candidates of type relay.
Here is a capture of the candidate portions of the Trickle ICE test page, showing

the TURN server’s relay candidates as well as the srflx candidates, from STUN:

Chapter 8. Deploying WebRTC Apps to Production • 218

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Excellent. That proves the TURN server is set up and doing its job. But let’s

take things a step further and set up time-limited credentials to better protect

your TURN server.

Generating Time-Limited Credentials with your Signaling Server

Instead of relying on Coturn’s long-term credentials (a hardcoded username

and password that would end up exposed to the world), we can configure

Coturn to use time-limited credentials. Those will require you to create a

shared secret, which you’ll need to include in the turnserver.conf file and also

provide to your WebRTC app’s server scripts.

Once your shared secret is set, we’ll add logic to the signaling channel to

push down automatically generated, time-limited credentials to users. Users

already have to connect to the signaling channel, of course, so this won’t do

much at all to complicate the way a call is set up. Users will be completely

unaware that all of this is happening.

Note that time-limited credentials will still be discoverable by people who

might want to hijack your TURN server. But by restricting your credentials

to be usable for only a certain period of time, your TURN server becomes a

much less attractive target.

Open your turnserver.conf file again. At this point, you can remove or comment

out the user=testingonly:topsecret line (or whatever username and password you

chose for long-term credentials). In its place, add a new static-auth-secret line

with a value of your choosing:

in /etc/turnserver.conf
user=testingonly:topsecret
static-auth-secret=someComplicatedSecretGoesHere
fingerprint

With that set, you can restart Coturn with sudo systemctl restart coturn or whatever

command your operating system uses.

Back in your WebRTC app, like the one in the deploy/ directory, have a look at

the server.js file. At the very top, server.js requires the Node.js crypto library,13 which

makes an appearance at the bottom of the file in a createCoturnCredentials() function:

deploy/server.js

// Load up necessary modules
const crypto = require('crypto');

// snip, snip...

13. https://nodejs.org/api/crypto.html

report erratum • discuss

Setting Up Your Own STUN/TURN Server • 219

http://media.pragprog.com/titles/ksrtc/code/deploy/server.js
https://nodejs.org/api/crypto.html
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

function createCoturnCredentials(expiry_in_hours, secret) {
// JavaScript timestamps are in milliseconds, so divide by 1000
const now = Math.round(Date.now() / 1000);
const expiry = (now + (expiry_in_hours * 60 * 60)).toString();
const hmac = crypto.createHmac('sha1', secret);
hmac.setEncoding('base64');
hmac.write(expiry);
hmac.end();
return {
username: expiry,
password: hmac.read()

};
}

The createCoturnCredentials() function takes two arguments: expiry_in_hours, which

is the number of hours the credentials should last once they’ve been generated,

and secret, which will ultimately be the same value you set on static-auth-secret
in turnserver.conf. The body of the function generates a Unix timestamp (the

number of seconds since January 1, 1970) for the current time, to which it

adds the number of seconds representing the hours set on expiry_in_hours. Note

that JavaScript returns Unix timestamps in milliseconds, which is why it’s

necessary to divide by 1000. Without that division, your time-limited creden-

tials would last for centuries.

The createHmac() crypto method then creates hash-based message authentication

code (HMAC) based on a SHA-1 hash using the shared secret. Remember that

this is all server-side logic, so that secret will not be exposed to end users.

Two more methods, setEncoding() and write(), take the expiry value to create a

hashed, base-64 time-limited password. The function then returns an object

literal using the expiry as a username, and the hashed password.

It’s that combination of the expiry-based username and hashed password

that limits the time your credentials can be used: once the current Unix

timestamp is greater than your set expiry, Coturn will no longer honor those

credentials. Keep in mind that Coturn is able to make these same hashing

calculations on its own end, which is why we’re able to create this time-limited

set of credentials without touching Coturn itself. It’s pretty awesome.

Sharing Time-Limited Credentials with Users

Whether you agree that this crypto-wizardry is awesome or not, you’ll never-

theless need to share the time-limited credentials with users. That happens

inside of the anonymous callback attached to the signaling channel’s connect
event on your namespace:

Chapter 8. Deploying WebRTC Apps to Production • 220

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

deploy/server.js

mp_namespaces.on('connect', function(socket) {

const namespace = socket.nsp;

const expiry_in_hours = 4; // credentials last for four hours➤

const secret = process.env.TURNSECRET || 'your secret goes here';➤

const credentials = createCoturnCredentials(expiry_in_hours, secret);➤

const peers = [];

for (let peer of namespace.sockets.keys()) {
peers.push(peer);

}
console.log(` Socket namespace: ${namespace.name}`);

// Send the array of connected-peer IDs and the TURN credentials
// to the connecting peer
socket.emit('connected peers', { peers, credentials });➤

// Send the connecting peer ID to all connected peers
socket.broadcast.emit('connected peer', socket.id);

socket.on('signal', function({ recipient, sender, signal }) {
socket.to(recipient).emit('signal', { recipient, sender, signal });

});

socket.on('disconnect', function() {
namespace.emit('disconnected peer', socket.id);

});

});

The expiry_in_hours value is set to 4 hours. Any value slightly longer than the

longest call you can imagine on your app is a good one. Should the call last

longer than the expiry, and should a user need to reconnect to the TURN

server, but not the signaling server, the original credentials might no longer

be valid. You could also, of course, write logic to generate and share credentials

at shorter, regular intervals, if that’s a concern or if you don’t want to guess

how long a call might last.

In addition to the expiry, the signaling channel needs access to the secret

shared with Coturn. There are two ways to share your secret with your server.js
file. One is to paste it in the ‘your secret goes here’ string. The other is to set on

your server a TURNSECRET environment variable that contains the shared secret.

The advantage to the environment variable is that you could conceivably

automatically generate and frequently rotate the shared secret (say, every 24

hours), provided you script some mechanism to update the turnserver.conf file
with it and restart Coturn programmatically. Additionally, by setting the

TURNSECRET environment variable, there’s no risk that your shared secret ends

report erratum • discuss

Setting Up Your Own STUN/TURN Server • 221

http://media.pragprog.com/titles/ksrtc/code/deploy/server.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

up on GitHub or GitLab, if you’re keeping a copy of your repo on a public site

like that.

However you choose to share your secret, the connected peers event now passes

down an object containing both the peers array and the new credentials object

literal. To make use of credentials, adjustments need to be made to the client-

side JavaScript. Let’s take a look at them, starting with a revised handleScConnect-
edPeers() callback:

deploy/www/js/main.js

function handleScConnectedPeers({ peers, credentials }) {➤

const ids = peers;➤

console.log(`Connected peer IDs: ${ids.join(', ')}`);

console.log(`TURN Credentials: ${JSON.stringify(credentials)}`);➤

// addCredentialedTurnServer('turn:coturn.example.com:3478', credentials);➤

for (let id of ids) {
if (id === $self.id) continue;
// be polite with already-connected peers
initializePeer(id, true);
establishCallFeatures(id);

}
}

There, again, you see our old friend destructuring assignment pulling out the

peers and credentials values the signaling server pushes down on the connected peers
event. A quick assignment on ids keeps the rest of the function intact. The

function logs the TURN credentials to the console, just in case you want to

inspect them. Then there is a line that has been left commented out for you

to add your TURN server URL, which will be appended to the $self.rtcConfig.ice-
Servers array along with the credentials now coming down from the signaling

channel. All of that happens right before users begin to build connections

with any peers already connected on the call.

The addCredentialedTurnServer() function responsible for that looks like this:

deploy/www/js/main.js

function addCredentialedTurnServer(server_string, { username, password }) {
// Add TURN server and credentials to iceServers array
$self.rtcConfig.iceServers.push({
urls: server_string,
username: username,
password: password,

});
}

Chapter 8. Deploying WebRTC Apps to Production • 222

report erratum • discuss

http://media.pragprog.com/titles/ksrtc/code/deploy/www/js/main.js
http://media.pragprog.com/titles/ksrtc/code/deploy/www/js/main.js
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

All it’s doing is taking your TURN server string, something like turn:coturn
.example.com:3478, along with the time-limited credentials received via the sig-

naling channel, and pushing those values onto the end of the iceServers array.

Go ahead once more and redeploy your app with those changes. Inspect the

console output, or invite another group of friends to test out the app with

you. If you really want to put the TURN server to work, you can modify your

$self.rtcConfig object to include the iceTransportPolicy property set to 'relay'. If you

opt to test that out, just remember to deploy your app again with that line

removed or set to the default value of 'all'.14

Next Steps

The next steps are all up to you! You’ve developed a robust familiarity with

WebRTC, and you’ve now even deployed your work to production. You’ve even

set up your own STUN/TURN server with Coturn, and configured your app

to use it securely in a production environment. That means you’ve now got

the knowledge you need to begin building apps entirely of your own design.

I hope you’ll stay in touch on the book’s forum,15 and report any errors you

might have found.16

14. https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/RTCPeerConnection#parameters
15. https://forum.devtalk.com/t/programming-webrtc-pragprog/20203
16. https://forum.devtalk.com/c/community/pragprog-customers/85?tags=book-programming-webrtc

report erratum • discuss

Setting Up Your Own STUN/TURN Server • 223

https://developer.mozilla.org/en-US/docs/Web/API/RTCPeerConnection/RTCPeerConnection#parameters
https://forum.devtalk.com/t/programming-webrtc-pragprog/20203
https://forum.devtalk.com/c/community/pragprog-customers/85?tags=book-programming-webrtc
http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

APPENDIX 1

Connection Negotiation

in Legacy Browsers

Two types of fixes are required to achieve backward compatibility in browsers

with older WebRTC implementations. The first type of fix involves manually

creating offers and answers—a fix for the very oldest browsers that implement

WebRTC. The second type of fix addresses glare. Glare is a state where both

peers each have offers out and expect an answer from the other. But neither

polite peers on older browsers nor impolite peers on any browser are capable

of generating an answer when they have their own offers out. Glare represents

a stalemate that cannot be recovered from—unless you step in with a fix

yourself.

Implementing Backward-Compatible Fixes

All the examples in this appendix represent modifications to the signaling-

and WebRTC-callback logic from a basic peer-to-peer application. To see these

fixes as applied to a multipeer application, have a look at the example in the

book’s companion source code in the deploy/ directory.

Let’s look at these fixes in source-code order.

Adding a New State Property

The first fix is to add a new isSuppressingInitialOffer state property to $self:

const $self = {
rtcConfig: null,
isPolite: false,
isMakingOffer: false,
isIgnoringOffer: false,
isSettingRemoteAnswerPending: false,

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

isSuppressingInitialOffer: false,➤

mediaConstraints: { audio: true, video: true },
mediaStream: new MediaStream(),
mediaTracks: {},
features: {
audio: false

}
};

That state, once set to true by logic you’ll write below, will ensure that one

peer does not produce an offer when connection negotiation starts over again.

Updating the negotiationneeded Callback

We can see that in the second fix, which is to update the handleRtcConnectionNego-
tiation() callback on the onnegotiationneeded event. The first thing to do is just exit

the function when $self.isSuppressingInitialOffer evaluates to true.

The first set of adjustments is for very old browsers that do not create an offer

when setLocalDescription() is called, as modern browsers do. A try/catch/finally

statement will try the modern method. If it fails, the catch block manually cre-

ates the offer with createOffer(), and passes it into setLocalDescription(). Finally,

however the offer was generated—automatically or manually—the finally block

sends the local description over the signaling channel:

async function handleRtcConnectionNegotiation() {
// peers suppressing initial offers should do nothing but exit
if ($self.isSuppressingInitialOffer) return;

// older browsers do not automatically create an offer when they
// call `setLocalDescription`
try {
$self.isMakingOffer = true;
await $peer.connection.setLocalDescription();

} catch(e) {
// manually create the offer with the automatic version fails
const offer = await $peer.connection.createOffer();
await $peer.connection.setLocalDescription(offer);

} finally {
// however the local description is set, send it over the
// signaling channel
sc.emit('signal',

{ description: $peer.connection.localDescription });
$self.isMakingOffer = false;

}
}

Appendix 1. Connection Negotiation in Legacy Browsers • 226

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Adding a New Reset-and-Retry Function

The remaining adjustments are to how signals are processed with offers and

answers. But before we get to those, write a brand-new function that handleSc-
Signal() can call to reset and retry the peer connection under glare conditions:

function resetAndRetryConnection(peer) {

// Reset all initial $self state-properties except isPolite
$self.isMakingOffer = false;
$self.isIgnoringOffer = false;
$self.isSettingRemoteAnswerPending = false;

// Set the offer-suppression state property to `true` for the
// polite peer
$self.isSuppressingInitialOffer = $self.isPolite;

// Reset the peer and reestablish the call, which triggers
// the `negotiationneeded` event and its callback again
resetPeer(peer);
establishCallFeatures(peer);

// Inform the impolite peer to reset, too:
if ($self.isPolite) {
sc.emit('signal', { description: { type: '_reset' } });

}

}

What that function does is reset the state properties on $self to false, with the

exception of your new isSuppressingInitialOffer state. That now takes the value of

isPolite—meaning that the polite peer from the original, failed attempt to connect

will not create an offer but sit in silence and await an offer from the impo-

lite peer.

The resetAndRetryConnection() function also calls the resetPeer() and establishCallFea-
tures() functions to start fresh. The call to establishCallFeatures() will trigger the

negotiationneeded event anew, but only the non-suppressing peer can send out

an offer now.

To wrap this function up, it will be the polite peer who determines that a glare

state has been reached. So the polite peer will use the signaling channel to

transmit a description of type '_reset' to the impolite peer. The reset type takes

an underscore in the outside chance an official 'reset' description is added to

the WebRTC spec in the future.

report erratum • discuss

Implementing Backward-Compatible Fixes • 227

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Updating the handleScSignal Callback

Now you can turn to the handleScSignal() function itself. First off, check for the

new '_reset' description type. If that’s what’s come in, call resetAndRetryConnection()
and exit the handleScSignal() function with a return statement:

async function handleScSignal({ description, candidate }) {
if (description) {

if (description.type === '_reset') {➤

// Reset and retry the connection, and exit the `handleScSignal()`➤

// function➤

resetAndRetryConnection($peer);➤

return;➤

}➤

// snip, snip

}

// snip, snip
}

Further down the function, you’ll need to add a try/catch statement around the

setRemoteDescription() call. Polite peers with modern browsers who have an offer

out are able to roll back their own offer and accept the impolite peer’s offer. But

polite peers with older browsers will now put resetAndRetryConnection() in motion:

async function handleScSignal({ description, candidate }) {
if (description) {

// snip, snip

if ($self.isIgnoringOffer) {
return;

}

$self.isSettingRemoteAnswerPending = description.type === 'answer';
try {➤

// If this throws an error, as it will for polite peers on➤

// older browsers, the connection must be reset and retried➤

await $peer.connection.setRemoteDescription(description);➤

} catch(e) {➤

// Reset and retry the connection, and exit the `handleScSignal()`➤

// function➤

resetAndRetryConnection($peer);➤

return;➤

}➤

Appendix 1. Connection Negotiation in Legacy Browsers • 228

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

$self.isSettingRemoteAnswerPending = false;

// snip, snip

}

// snip, snip

}

That now completes all of the logic needed to recover from a glare state.

Your final adjustment to handleScSignal() is similar to the one that you made on

handleRtcConnectionNegotiation(). This time, though, you will implement a try/catch/

finally statement to manually create an answer in response to an incoming

offer, and send it over the signaling channel:

async function handleScSignal({ description, candidate }) {
if (description) {

// snip, snip

$self.isSettingRemoteAnswerPending = false;

if (description.type === 'offer') {
try {➤

await $peer.connection.setLocalDescription();➤

} catch(e) {➤

const answer = await $peer.connection.createAnswer();➤

await $peer.connection.setLocalDescription(answer);➤

} finally {➤

sc.emit('signal',➤

{ description: $peer.connection.localDescription });➤

$self.isSuppressingInitialOffer = false;➤

}➤

}

} else if (candidate) {

// snip, snip

}

}

As one last fix for glare states, the finally block sets isSuppressingInitialOffer back

to false. That will ensure polite peers who have been suppressing offers will

be able to create additional offers, as can happen when additional media or

a data channel gets added for the first time after a call has been established.

report erratum • discuss

Implementing Backward-Compatible Fixes • 229

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Bibliography

[Kel21] Faraz K. Kelhini. Modern Asynchronous JavaScript. The Pragmatic Book-

shelf, Dallas, TX, 2021.

[Swi08] Travis Swicegood. Pragmatic Version Control Using Git. The Pragmatic

Bookshelf, Dallas, TX, 2008.

report erratum • discuss

http://pragprog.com/titles/ksrtc/errata/add
http://forums.pragprog.com/forums/ksrtc

Index

SYMBOLS
$ (dollar sign), regular expres-

sions, 30

${} placeholder, 69

() (parentheses), calling vs.
passing functions, 23

...
rest parameters, 115, 142
spread syntax, 97, 115

/ (slash), regular expressions,
30

= (equals sign) for assign-
ment, 54

=== strict-comparison opera-
tor, 54

^ (caret), regular expressions,
30

` (backtick) for template liter-
als, 69

{} (braces) for destructuring
assignment, 48

A
accept attribute, 119

accessibility
text chat interface, 76
UI design, 12, 17

Accessible Rich Internet Appli-
cations attributes, see ARIA
attributes

adapter.js, 69

addChatChannel(), 84

addCredentialedTurnServer(), 222

addEventListener(), 22–25

addFeaturesChannel(), 112–117,
155, 169–170

addIceCandidate(), 58

addStreamingMedia()
building, 50
enabling audio, 103
multipeer connections,

155
removing media from re-

moved devices, 187–
190

addTrack(), 40, 49, 104, 182

anonymous callback func-
tions, see event listeners

answers
handling, 56–57
offer-answer pattern of

peer connections, 26

APP_DOMAIN, 209

appendMessage(), 82, 84, 121–
123, 130

ARIA attributes
audio/video toggles, 105–

106
defined, 106
sharing images over text

chat, 119

aria-checked attribute, 106, 109

aria-hidden attribute, 105, 113,
119

aria-label attribute, 106

arraybuffer, 124, 126

arrays, cycling filters, 66

aspect ratio, 78, 194

assignment
= (equals sign) for, 54
destructuring, 48, 53,

59, 156, 222

asymmetric code, peer-to-peer
patterns, 12

asymmetric data channels
ID values, 75
labeling, 73
legacy browsers and, 70
metadata, 125
sending data, 75
using, 63
when to use, 74

async, 41

asynchronous functions
browser support, 48
creating arraybuffer from
blob, 127

handling incoming ICE
candidates, 58

media permissions and,
38, 42

peer connections, 47
perfect negotiation logic,

53
promises, 41, 48
responding to offers and

answers, 56
understanding, 41

audio
disabling, 15, 40
enabling, 99–104
muting, 102
safety, 98, 102
toggling, adding, 98–117
toggling, building, 105–

112
toggling, disabling for

undetected devices,
180–182, 187

toggling, multipeer con-
nections, 167–171

toggling, sharing peer
status and, 112–117

toggling, wiring logic,
108–112

audit fix (npm), 3

audit fix --force (npm), 3

autoConnect, disabling, 34

autocorrect, disabling, 76

autoplay attribute, 15, 147

await, 41, 47

B
background color, video ele-

ments, 21

backtick (`) for template liter-
als, 69

.bash_profile file, 5

.bashrc file, 5

binary data
sending and receiving

images over text chat,
125–131

support for, 123, 130
types of, 124

blob, 124, 126

Blob API, 124

border-box, 17

borders, styling, 18

box-sizing, 17

boxes
flexboxes, 19, 76, 79–81,

107
media permissions, 38,

173
styling, 17

braces ({}) for destructuring
assignment, 48

browsers
binary data support,

123, 130
blocked devices errors ta-

ble, 191–192
caching, disabling, 6
constraints support, 193
detecting and checking

support for features,
123

device availability errors
table, 174–176

device changes and, 183
device details informa-

tion, 177
implicit rollback support,

48
legacy, 7, 69, 225–229

overconstraining errors
table, 195

Permissions API and, 190
permissions, denial of,

183, 190–192
selecting, 1, 6
self-signed certificates

warnings, 4–6, 8–10
support baselines, 48

Bruaroey, Jan-Ivar, 51

buttons
audio/video toggles,

building, 105–112
audio/video toggles, dis-

abling for undetected
devices, 180–182, 187

audio/video toggles,
wiring logic, 108–112

camera, 99, 105–112,
180–182, 187

connecting to signaling
channel, 33

JavaScript functionality,
22–25

joiner vs. caller pattern,
13

microphone, 99, 105–
112, 180–182, 187

sending images over text
chat, 117–131

styling, 14, 18–20, 24
text chat send button, 76

C
caching, disabling, 6

callbacks, see also event lis-
teners

adding to peer connec-
tions, 46–51

anonymous, understand-
ing, 22

data and, 24
placeholders for, 34
registering, 50
writing named functions

as, 22–25

caller pattern, 12

camera
detecting added/dropped,

182–187
muting, 112–117, 167–

171
permissions, denial of,

190–192
permissions, determining

device availability, 174–
180

permissions, dialog box,
173

permissions, requesting,
37–42

toggling, adding, 98–117
toggling, building, 105–

112
toggling, disabling for

undetected devices,
180–182, 187

toggling, multipeer con-
nections, 148, 167–171

toggling, sharing peer
status and, 112–117

toggling, wiring logic,
108–112

candidate, multipeer connec-
tions, 156

captions
user display names, 169
videos and multipeer

connections, 146–147,
149

caret (^), regular expressions,
30

Certbot, 205

certificates
deployment and, 204–206
self-signed, 4–6, 8–10

Certs directory, 4–6

chat, see text chat

chown, 205

Chrome
advantages, 6
binary data support,

123, 130
caching, disabling, 6
constraints support, 194
device availability errors,

175
device changes and, 183
device details informa-

tion, 177
overconstraining errors

table, 195
Permissions API and, 190
permissions, denial of,

190–192
self-signed certificates

warnings, 8

chunks, 125, 127, 130

class keyword, 65

classes, declaring, 65

click events
join/leave call button,

22–25

Index • 234

security and, 118
toggling camera and mi-

crophone, 108–112

click(), 118

client-server architecture, 25

close(), 34, 61

closed state, 68

closures, multipeer connec-
tions, 159–164, 169

cloud deployment, 197

code
asymmetric function in

symmetric code, 44–46
organization habits, 22

code for this book
deployment, 3
directories and organiza-

tion, 3
downloading, 2
multipeer connections,

133, 139
self-signed certificates, 5
server component, xii, 2
signaling channel, 27–32
source code, xiv, 1
startup script, 5

CODECs, xiii, 52, 174

color, background color for
video elements, 21

columns, grids, 149

communication platforms as
a service (CPaaS), xiii

configuring
app for deployment, 198–

202
configuration file names,

204
environment for HTTPS,

4–6
Git, 207
Nginx, 204–206, 212–214
peer connection setup, 43
testing and, 43
TURN server, 217–223

connect, 28, 34

connected peer
about, 28
establishing polite peer,

45
multipeer connections,

logic, 145
registering, 34

connected peers
multipeer connections,

logic, 143, 145
multipeer connections,

setup, 137

connected state, 68

connecting state, 68

connection, 151

connectionState, 68, 70, 163

connections, see also connec-
tions, multipeer; politeness

closing, 60–62, 68, 152
connecting to peer,

adding callbacks, 46–
51

connecting to peer, setup
for, 42–51

data channels, 67–71
determining peer-connec-

tion states, 68–70
disabling autoConnect, 34
glare, 51, 55, 225, 227–

229
handling answers, 56–57
ICE candidates, handling

incoming, 57
legacy browsers, 7, 69,

225–229
negotiation logic, perfect,

51–59
offer-answer pattern, 26
offers, handling, 56–57
offers, ignoring, 53–56,

58
registering callbacks, 50
rejoining calls, 60–62
scripts, files and directo-

ries for, 3
second devices, 85
signaling channels, 25–

27, 32–34
symmetric code, 44–46
tracks, receiving, 59
tracks, sending, 49

connections, multipeer
challenges of, 133–136
closing, 152
with closures, 159–164,

169
errors, 134–135, 138,

158
generating video struc-

tures on the fly, 145–
150

initializing peers, 150–
152, 154

namespaces and, 136,
141

politeness, 140, 150,
153–154

resetting connections,
152, 156

scripts, files and directo-
ries for, 4

setting streams, 155
setup, 136–139
sharing features over,

165–171
signaling channels for,

136–145, 152–159, 162
signaling logic, 139–145
starter app code, 133,

139
streams, setting, 147–150
styling, 149
testing, 144, 164

constraints
applying, 174, 193–195
browser support for, 193
conditionally adding

tracks for available de-
vices, 181

device availability errors,
176–180

enabling access to micro-
phone and camera, 100

errors, 194
expressions, 40
as gravitational, 194
overconstraining media,

194
permissions, requesting,

38, 40
tools, 194

Constraints Exerciser, 194

continue, skipping self in multi-
peer connections, 153

Coturn
credentials mechanisms,

217–223
deployment with, 198,

214–223
installing, 215

CPaaS (communication plat-
forms as a service), xiii

createCoturnCredentials(), 219

createDataChannel(), 71, 73, 84

createHmac(), 220

createObjectURL(), 121

createVideoStructure(), 146–150

credentials
deployment and TURN

servers, 217–223
long-term, 217

Index • 235

sharing with users, 220
time-limited, 217, 219–

223

crypto library, 202, 219

CSS
app interface, 13, 17–22
audio/video toggles, 105–

108
boxes, 17
buttons, 14, 18–20, 24,

180
cursors, 70
disabling caching for lat-

est version, 6
headers, 13
multipeer connections,

149
text chat interface, 76–

81, 85
text chat interface, send-

ing images, 118
text chat messages, 93,

97
text chat, sharing images,

122
username form, 165–171
video filters, 64–73

cursor
not-allowed, 181
pointer style, 70

cycleFilter(), 66

D
data

callbacks and, 24
multipeer connections,

destructuring in, 138
multipeer connections,

handling, 143, 152–
159

multipeer connections,
sending in, 137

optimizing for available
devices, 174

data channels, see also asym-
metric data channels; nego-
tiated data channels

checking, 72
connecting, 67–71
creating, 71, 84
filtering videos, 63–73
handling, 63–90
ID values, 75
identifying uniquely, 73–

75
labels, 64, 71
maximum message size,

125

opening, 73–75
sending data, 75
sharing features over,

112–117, 165–171
symmetric, 63, 73–75,

83–86
text chat, about, 63
text chat, appending im-

ages to log, 120–123
text chat, building, 75–90
text chat, message-

queueing system, 75,
86–90

text chat, sending images
over, 117–131

text chat, setup, 83–86
toggling camera and mi-

crophone, building,
105–112

toggling camera and mi-
crophone, multipeer
connections, 167–171

toggling camera and mi-
crophone, role in, 98

toggling camera and mi-
crophone, sharing sta-
tus, 112–117

data- attributes, using, 95

data-connection-state attribute,
164

data-timestamp, 95

datachannel event, 72

dataset property, 95, 164

debouncing, device changes,
183–186

debugging
data channels, 75
disappearing videos, 78
strict mode and, 22
video rendering, 78–79

defaultBranch property, 207

delayed class, 97

demos
directory for, 3
running, 7

demos directory, 3

dependencies
deprecated warnings, 3
installing, 3, 7
installing global packages

without sudo, 210
server script, 202

deploy directory, 3

deployment
cloud, 197
code for this book, 3

configuring app for, 198–
202

credentials and, 217–223
with custom STUN/TURN

server, 214–223
deploy/ directory, 3
with Git, 198, 207–210
server, configuring, 202–

206, 212–214
server, role in, 197
testing, 209, 216, 218

description, multipeer connec-
tions, 156, 158

design
interfaces and, 11–13
intrinsic layout, 149
peer-to-peer patterns,

12, 44
precision and, 12
symmetric code and, 44

destructuring assignment
filtering data changes, 72
multipeer connections,

handling, 156
politeness, 53
receiving tracks, 59
sharing credentials, 222
syntax, 48

detectAvailableMediaDevices(), 177–
180, 185

development
configuring for HTTPS, 4–

6
environment setup, 1–10

devicechange, 182–187

directories
code for this book, orga-

nizing, 3
functions and, 22
self-signed certificates

and, 4–6
starting server and, 8

disabled attribute, 180

disconnect, 28

disconnected peer
about, 28
multipeer connections,

logic, 145, 156
multipeer connections,

setup, 137
registering, 34

disconnected state, 68

display, sharing images over
text chat, 119

Index • 236

displayStream()
multipeer connections,

147, 152, 155
receiving tracks, 59
removing tracks, 189
sharing features, 111

dollar sign ($), regular expres-
sions, 30

DOMException, 135

E
e for data in callbacks, 24

emit(), 137, 158, 163

enableOrDisableMediaToggleButtons(),
180–182

enumerateDevices(), 176–180

environment
configuring for HTTPS, 4–

6
development environment

setup, 1–10
VPN, 217

environment variables
self-signed certificates, 5
shared secrets, 221

equals sign (=) for assign-
ment, 54

errors
constraints, 194
device availability, deter-

mining, 174–176, 179
ICE candidates, 58
multipeer connections,

134–135, 138, 158
permissions, 174–176,

179, 191–192
strict mode and, 22
unsent text messages, 86

eturnal, 214

event for data in callbacks, 24

event listeners
filters with data chan-

nels, 72
join/leave call button,

22–25
text chat interface, 81–83
toggling camera and mi-

crophone, 108–112

events, see also data chan-
nels

filters, 67, 71–73
signaling channels, 28,

138

text chat, interface logic,
81–83

text chat, sending images
over, 117–120

exact, overconstraining and,
194

expiry_in_hours, 220

expression interpolation, 69

extensions and readability,
119

F
fail2ban, 203

failed state, 68

features
detecting and checking

support for, 123
queueing, 115
sharing over multipeer

connections, 165–171
sharing specific, 114–117

features property
audio setup, 100
setting to empty object,

101

feedback
damage from, 98, 102
disabling audio to avoid,

15, 40

<figcaption> element, 146, 149,
169

files, temporary, 118, 121,
see also directories

filter property, 64–73

filters
applying locally, 65–67
applying remotely, 67–73
multipeer connections,

153
types of, 65
videos, 63–73

fingerprint, 217

Firefox
advantages, 6
caching, disabling, 6
click events and security,

118
connection states polyfill,

69
constraints support, 194
device availability errors,

175
device changes and, 183
device details informa-

tion, 177

overconstraining errors
table, 195

Permissions API and, 190
permissions, denial of,

190–192
self-signed certificates

warnings, 8
versions, 6
video rendering issues,

78–79

firewalls
Coturn and, 215
server setup, 203
starting server and, 8
STUN/TURN servers and,

199, 201, 215

flexboxes
A/V toggling, 107
defined, 19
join/leave call button, 19
text chat, 76, 79–81
vertical, 79

forms
text chat interface, 76,

79–81
username, 165–171

functions, see also asyn-
chronous functions; clo-
sures

calling vs. passing, 23
directories, 22
naming, 22
rest parameters, 115, 142
writing as callbacks, 22–

25

G
-g flag for global installation,

210

generateRandomAlphaString(), 142

get(), initializing peers and
multipeer connections, 151

getAudioTracks(), 102

getSenders(), 188

getSupportedConstraints(), 193

getTracks(), 40, 42, 100, 103

getUserMedia()
about, 173
as asynchronous, 42
browser support, 48
constraints, applying,

40, 193–195
detecting device changes,

182, 185

Index • 237

managing tracks, 100
permissions, determining

device availability, 175–
180, 190

getVideoTracks(), 102

Git
configuring, 207
deployment with, 198,

207–210
hooks, 208–210
installing, 207
versions, 207

glare, 51, 55, 225, 227–229

grid-template-columns, 149

H
handleImageButton(), 118

handleImageInput(), 118–121

handleMediaDeviceChange(), 184–
187

handleMessageForm(), 82, 84, 94–
98

handleResponse(), 96, 127

handleRtcConnectionNegotiation(),
46–48, 162, 226

handleRtcConnectionStateChange(),
68

handleRtcDataChannel(), 73, 130

handleRtcIceCandidate(), 46–48,
200, 218

handleRtcPeerTrack(), 46, 59,
104, 161

handleScConnect(), 50, 143, 153

handleScConnectedPeer(), 46, 152–
156

handleScConnectedPeers(), 143,
152–156

handleScDisconnectedPeer(), 61,
144, 156

handleScSignal()
ignoring offers, 56–57
legacy browsers, 227–229
multipeer connections,

139, 156–159
perfect negotiation logic,

53–59

handleSelfVideo(), 71

handleUsernameForm(), 169

Hank, 131

hashes
credentials, 220
namespacing signaling

channels, 29

headers
adding, 13
reverse proxying and, 212
styling, 13
text chat interface, 76

headphones, 177–178

$HOME variable, self-signed
certificates, 5

Homebrew, 2

HTTP
client-server architecture,

25
vs. HTTPS, 8
reverse proxying and, 212

HTTPS
certificates, 204–206
configuring for, 4–6
vs. HTTP, 8
reverse proxying, 204

I
ICE candidates

configuring app for de-
ployment, 198, 200

deployment and, 202,
216, 218

empty candidates, 58
errors, 58
event handler setup, 46–

48
handling incoming, 57
length, 58
multipeer connections,

closures, 163
multipeer connections,

failed, 158
multipeer connections,

routing, 139
multipeer connections,

understanding, 135

iceServers property, 198–201,
223

IDs
data channels and ID

values, 75
id attributes and chat

messages, 95
multipeer connections,

closures, 159–164
multipeer connections,

handling, 143, 156–
159

multipeer connections,
initializing peers, 150

multipeer connections,
signaling channels,
137, 153–155

multipeer connections,
toggling camera and
microphone, 167–171

multipeer connections,
videos and id attribute,
146–147

skipping self in multipeer
connections, 153

images
appending to chat log,

120–123
sending as binary data,

125–131
sending over text chat,

117–131

infinite loops, 90

inputDeviceInfo object, 177

installing
Coturn, 215
dependencies, 3, 7, 210
-g flag for global installa-

tion, 210
Git, 207
global NPM packages

without sudo, 210
Nginx, 203
Node.js, 2, 203
openssl, 4
PM2, 210

Interactive Connectivity Estab-
lishment candidates,
see ICE candidates

interfaces, see also buttons;
forms

basic peer-to-peer, creat-
ing, 11–25

intrinsic layout, 149
JavaScript functionality,

12, 22–25
layout for app interface,

17–22
peer video stream setup,

14
peer-to-peer patterns,

12, 44
placeholders for call-

backs, 34
precision and, 12
self video stream setup,

14–16
styling app interface, 13,

17–22, 31
text chat interface, build-

ing, 76–81
text chat interface, send-

ing images, 117–120

intrinsic layout, 149

Index • 238

IP addresses
connecting second de-

vices, 85
NAT gateway and, 199
server setup for deploy-

ment, 203
starting server and, 8

iptables, 216

isIgnoringOffer
about, 43
errors, 58
multipeer connections,

140, 158
using, 54

isMakingOffer, 43, 47, 55, 140

isPolite, 43–46, 54, 140, 227

isSettingRemoteAnswerPending, 43,
55–57, 140

J
JavaScript

asynchronous functions
and, 41

class declarations, 65
data attributes and, 95
disabling caching for lat-

est version, 6
forms, 76
interface functionality

and design considera-
tions, 12, 22–25

join/leave call button,
22–25

strict mode, 22
writing named functions

as callbacks, 22–25

join call button
connecting to signaling

channel, 33
creating, 13
JavaScript functionality,

22–25
rejoining connections,

60–62
styling, 18–20, 24

joinCall(), 33

joiner pattern, 12, 44

JSON
defined, 94
determining device avail-

ability with media con-
straints, 179

parsing, 95, 113
sharing features over da-

ta streams, 113
stringifying metadata,

127, 130

stringifying objects, 94
text chat messages, 93–

98

justification, flexboxes, 20

K
Kelhini, Faraz, 42

keys, deployment and, 204–
206

kind property
handling peer tracks, 104
looping through tracks,

103

L
labels

defined, 71
filters with data chan-

nels, 64, 71
negotiated data channels,

74
as non-unique, 73

leave call button
closing connections, 60–

62
connecting to signaling

channel, 33
creating, 13
JavaScript functionality,

22–25
multipeer connections,

156
rejoining connections,

60–62
styling, 18–20, 24

leaveCall(), 33, 61, 156

length property, 58

Let’s Encrypt
Nginx server setup, 198,

204–206
self-signed certificates

script, 5

Linux
deployment setup, 197
Windows Subsystem for

Linux, 2

listeners, see event listeners

lists, ordered, 76

log
chat messages, append-

ing, 81–83, 95
chat messages, append-

ing images to, 120–123
chat messages, ordering,

76

device availability errors,
175–176

logging peer IDs with
failed ICE candidates,
158

loops
for...of syntax, 156
infinite, 90

M
main.js file, 32

maps, multipeer connections,
137, 141, 150, 155

Marcotte, Ethan, 20

margins, styling, 18

max, overconstraining and,
194

max-width, 20

MCUs (multi-conference
units), xiii

media constraints, see con-
straints

media devices
accessing devices, 173
availability, determining,

174–180
constraints, applying,

174, 193–195
detecting added/dropped,

182–187
dialog box, 173
disabling toggling for un-

detected devices, 180–
182, 187

enumerating, 176–180
managing, 173–195
permissions, handling

denial of, 190–192
removing streams from

removed devices, 186–
190

media permissions, see per-
missions

media property, 39

mediaConstraints property, 38,
40, 100, 178, 193

mediaStream object, 39, 110,
182, 187

mediaTracks property, 100–102,
110

MediaDeviceInfo object, 177

MediaStream object, managing
tracks, 101–104

MediaTrackConstraints, 193–195

Index • 239

memory, sharing images in
text chat, 121

mesh networks, multipeer
connections, 136, 138

messageQueue property, 87–90

metadata
sharing binary data, 127
sharing images in text

chat, 120, 125, 130
text chat messages, 93

Meyer, Eric, 17

microphone
detecting added/dropped,

182–187
disabling access to, 40
muting, 100, 112–117,

167–171
permissions and audio

setup, 99
permissions, denial of,

190–192
permissions, determining

device availability, 174–
180

permissions, dialog box,
173

sharing state of, 100
toggling, adding, 98–117
toggling, building, 105–

112
toggling, disabling for

undetected devices,
180–182, 187

toggling, multipeer con-
nections, 167–171

min, overconstraining and,
194

minmax(), 149

Modern Asynchronous Java-

Script, 42

monitoring, with PM2, 198,
210

Mozilla’s Constraints Exercis-
er, 194

multi-conference units
(MCUs), xiii

multi.js file, 4

multipeer connections, polite-
ness and, 154, see also con-
nections, multipeer

munging, xiii, 52

muted attribute, 15

muting
audio, 102
camera, 112–117, 167–

171

camera and microphone,
multipeer connections,
167–171

microphone, 100, 112–
117, 167–171

self video, 15

N
names

configuration files, 204
functions, 22
namespaces and connect-

ing second devices, 85
namespaces and multi-

peer connections, 136,
141

namespaces and signal-
ing channel, 29–32

user display names, 146–
147, 165–171

NAT (Network Address Trans-
lation), 199

negotiated data channels
adding, 74–75
labels and, 74
sharing features over,

112–117
text chat setup, 83–86

negotiation
event handler setup, 46
handling answers, 56–57
handling incoming ICE

candidates, 57
handling offers, 56–57
ignoring offers, 53–56, 58
legacy browsers, 226
multipeer connections,

134, 136, 154
perfect negotiation, 51–

59, 154
sending tracks, 49
signaling channels, role

of, 25–27

Network Address Translation
(NAT), 199

new, connection state, 68

Nginx, 198, 203–206, 212–
214

Node.js
deployment and, 202–203
installing, 2, 203
version, 2

not-allowed cursor, 181

NotAllowedError, 191

NotFoundError, 175, 191

npm (Node Package Manager)
installing dependencies,

3, 7
installing global packages

without sudo, 210
starting server, 3, 7
version, 2

numbers, random, 29–31

O
object-fit, 78

object-position, 78

offers
handling, 56–57
ignoring, 43, 53–56, 58
legacy browsers and, 226
offer-answer pattern of

peer connections, 26
rollback, 55
SDP (Session Description

Protocol), 47, 52

onclose, 71, 84

onconnectionstatechange, 68

onicecandidate, 46, 49

onload, 121

onmessage, 84, 112–114, 127

onnegotiationneeded, 46, 49, 226

onopen
filters, 73
message queues and, 88
sharing binary data, 126
sharing features, 112,

115, 170

ontrack, 46, 162

opacity, 97, 123

open(), 34

openssl, 4
options object, negotiated da-

ta channels, 74

order
looping through tracks,

103
message queues, 88–90

ordered lists, logging chat
messages, 76

OverconstrainedError, 175, 195

overflow property, 123

P
p2p.js file, 3

padding, 18, 123

parentheses (()), calling vs.
passing functions, 23

Index • 240

paths
configuration files, 204
deployment server script,

202

patterns
offer-answer pattern of

peer connections, 26
peer-to-peer patterns,

12, 44
perfect negotiation, 51–59
regular expressions, 30

$peer
enabling audio, 99–104
multipeer connections,

134, 140, 157
peer connection setup, 43

peer- prefix, 147

peers, see also connections,
multipeer; politeness

connecting to, adding
callbacks, 46–51

connecting to, perfect ne-
gotiation logic, 51–59

connecting to, set up, 42–
51

determining peer-connec-
tion states, 68–70

disconnecting, 137, 145,
156

initializing multipeer
connections, 150–152

listing logged-in, 145
removed devices and,

186–190
resetting, 60–62, 152,

156

perfect negotiation pattern
advantages, 51
logic, 51–59
multipeer connections,

154

permissions
accessing devices, 173
audio setup, 99
denial of, 183, 190–192
device availability, deter-

mining, 174–180
device changes and, 183
dialog box, 38, 173
errors, 174–176, 179,

191–192
OS-level blocking, 191
Permissions API, avoid-

ing, 190
requesting, 37–42

Permissions API, 190

platform-based implementa-
tions, xiii

playsinline attribute, 15, 147

PM2
installing, 210
monitoring with, 198,

210

politeness
establishing polite peer,

45, 55
multipeer connections,

140, 150, 153–154
negotiating, 43–46, 51–56
resetting and retrying

connections in legacy
browsers, 227–229

ports
reverse proxying and, 212
STUN servers, 200, 216

poster attribute
background color, 21
displaying video poster,

111
multipeer connections,

147
uses, 15

Pragmatic Version Control Us-

ing Git, 207

prepareNamespace(), 29, 31,
137, 141

.profile file, 5

promises, 41, 48

proxy_cache_bypass, 212

proxy_http_version, 212

proxy_pass, 212

proxy_set_header, 212

proxying, reverse, 198, 203–
204, 212–214

push (Git), 198, 208–210

push()
message queues, 88–90
video filters, 66

Q
querySelector(), 22, 40, 96

queueMessage(), 87–90

queues
features, 115
streaming binary data,

128
text chat message im-

ages, 128, 130
text chat message-

queueing system, 75,
86–90

R
random numbers, 29–31

readyState property, 86, 90

receiveFile(), 129–131

recipient, multipeer connec-
tions, 139, 157–158, 163

registerRtcCallbacks(), 46, 50,
160–161

registerScCallbacks(), 34, 143

regular expressions
namespaces and multi-

peer connections, 141
namespaces and signal-

ing channels, 29–31
understanding, 30

relay candidates, 218

remove(), 121

removeStreamingMedia(), 186–190

repeat() (CSS), 149

repositories, deploying with
Git, 207–210

requestUserMedia()
adding, 38
debouncing device

changes, 184
disabling toggling for un-

detected devices, 180–
182

enabling audio, 99–102
managing tracks, 101–

104
multipeer connections,

148
permissions, determining

device availability, 175–
180

understanding, 39–42

Reset CSS, 17

resetAndRetryConnection(), 227–
229

resetPeer()
creating, 61
enabling audio, 101
legacy browsers and, 227
multipeer connections,

152, 156

resources for this book, see

also code for this book
asynchronous functions,

42
Git, 207
online forum, xv, 223
openssl, 4

Index • 241

SDP (Session Description
Protocol), 52

strict mode and, 22

rest parameters, 115, 142

reverse proxying, 198, 203–
204, 212–214

revert value (CSS), 181

rollbacks, 48, 55

rtcConfig, 43, 151, 198–202,
222

RTCDataChannel
binary data, sending,

124, 130
filtering videos, 63, 67–73
negotiated data channels,

74
queueing messages, 87

RTCPeerConnection
callbacks with closures,

160
closing connections, 61
configuring app for de-

ployment, 198
determining peer-connec-

tion states, 68–70
glare and, 51
multipeer connections,

creating, 140
multipeer connections,

initializing peers, 150
multipeer connections,

politeness, 154
multipeer connections,

understanding, 134
peer connection setup, 43
politeness, 44, 154
setup, 43–51

RTCRtpReceiver objects, 174

RTCRtpSender objects, 174

RTCRtpTransceiver objects, xiii,
174

run start (npm), 7

S
Safari

artificial click events and,
118

device availability errors,
175

device changes and, 183
device details informa-

tion, 177
implicit rollback support,

48
overconstraining errors

table, 195

permissions, denial of,
190–192

self-signed certificates
warnings, 9

unmute and, 59
versions, 7
WebRTC support, 7

scaling, xiii, 29

scope, closures and, 162

scripts
files and directories for,

3
self-signed certificates, 5
startup, 5

scripts directory, 3

scrollTo(), 83

scrollToEnd(), 122

scrollTop(), 83

scrolling
chat messages, 83
sharing images in text

chat, 122

SDP (Session Description
Protocol)

contents of, 52
multipeer connections,

139
munging, xiii, 52
offers, 47, 52

second devices, connecting,
85

secrets, shared secrets and
credentials, 219–222

security
click events and, 118
deployment and creden-

tials, 217–223
device changes and, 183
self-signed certificates, 4–

6, 8–10
server setup, 203

selective forwarding units
(SFUs), xiii

$self
enabling audio, 99–104
legacy browsers and state

property, 225
multipeer connections,

140, 157
peer connection setup, 43
user-media permissions,

37, 39

self-signed certificates, 4–6,
8–10

selfStates, 151, 157, 163

send(), 84, 87, 94–96

sendFile(), 125–129

sendOrQueueMessage(), 87–90,
94–96, 128

sender, multipeer connections,
139, 156, 158, 163

separator argument, 142

server-reflexive candidates,
200, 217–218

server.js file, 3, 202

servers
client-server architecture,

25
code for this book, xii, 2
deployment, configuring

for, 202–206, 212–214
deployment, with Git,

207–210
deployment, role in, 197
scripts for, 3, 202
server-implementations

of WebRTC, xiii
setup, checklist, 203
starting, 3, 7
stopping, 7

Session Description Protocol,
see SDP (Session Descrip-
tion Protocol)

set(), initializing peers, 151

setEncoding(), 220

setLocalDescription(), 47, 51, 56,
226

setRemoteDescription(), 48, 56,
228

SFUs (selective forwarding
units), xiii

SHA-1 hash, 220

shareFeatures(), 114–117, 168–
170, 187–190

shared secrets, credentials,
219–222

shift(), 66, 90

show (PM2), 211

showUsernameAndMuteStatus(), 170

signal, 28, 34, 156

signaling channels
for this book, 27–32
connecting to, 32–34
credentials and, 219–223
events, list of, 28
files and directories for,

3
multipeer connections,

136–145, 152–159, 162

Index • 242

namespacing, 29–32
options for, 27
role of, 25–27

Simmons, Jen, 149

size property, multipeer con-
nections, 138

slash (/), regular expressions,
30

slice(), streaming binary data,
127, 130

Socket.IO
group messaging and,

168
multipeer connections,

137–139
signaling channel, con-

necting to, 32–34
signaling channel, for

this book, 27

spread syntax (...), 97, 115

src attribute, lack of, 16

srcObject property
generating video struc-

tures on the fly, 147
media permissions and,

40
multipeer connections,

147–148
role of, 16

srflx type, 200, 217–218

SSH, 203, 207

star networks, see mesh net-
works

start (npm), 3, 7

start-server, 3
_starter directory, 3

startsWith(), 72

status (PM2), 211

stream property, 39

streams
accessing with media

permissions, 40
displaying, 59
displaying when toggling

A/V, 111
filters and, 63–73
managing tracks, 101–

104
multipeer connections,

closing connections,
152

multipeer connections,
setting, 147–150, 155

peer video stream setup,
14

receiving tracks, 59
removed devices and,

186–190
self video stream setup,

14–16
source and srcObject prop-

erty, 16
vs. tracks, 39

strict mode, JavaScript, 22

strings
converting random num-

bers to, 31
ICE candidates’ length,

58
regular expressions, 30
startsWith(), 72
stringifying objects, 94
template literals (`), 69

structuredClone(), 179

stun protocol, 216

STUN servers
about, 197
configuring app for, 198–

202
defined, 199
deployment with custom,

214–223
fingerprinting messages,

217
NAT and, 199
number of in configura-

tion object, 201
public, 200
testing, 216
VPN environments and,

217

styling
app interface, 13, 17–22,

31
audio/video toggles, 105–

108
borders, 18
boxes, 17
buttons, 14, 18–20, 24,

180
cursor, 70
flexboxes, 19, 76, 79–81
headers, 13
layout for app interface,

17–22
multipeer connections,

149
text chat interface, 76–

81, 85
text chat interface, send-

ing images, 118
text chat messages, 93,

97

text chat, sharing images,
122

username form, 165–171
video elements, 20
video filters, 64–73
videos for text chat fea-

ture, 77

submit, 167

substring(), 31

Swicegood, Travis, 207

switch, A/V toggling, 109

symmetric code
peer-to-peer patterns, 12
perfect negotiation and,

51
politeness and asymmet-

ric function, 44–46

symmetric data channels
about, 63
sending data, 75
text chat, setup, 83–86
uniquely identifying

channels, 73–75

system-based implementa-
tions, xiii

T
template literals, 69

temporary files, sharing im-
ages over text chat, 118,
121

testing
configuration and, 43
deployment, 209, 216,

218
first test video calling

app, 60
multipeer connections,

144, 164
sending images over text

chat, 131
STUN server, 216
text chat, 85
TURN server, 218

text chat
about, 63
acknowledging received

messages, 95
appending images to chat

log, 120–123
appending messages, 81–

83, 95, 97
building, 75–90
data channel, 83–86
delayed messages, 97
disabling autocorrect, 76
interface, building, 76–81

Index • 243

interface, sending im-
ages, 117–120

logic, 81–83
maximum message size,

125
message-queueing sys-

tem, 75, 86–90
scrolling images, 122
scrolling messages, 83
send button, 76
sending images over,

117–131
sending messages, 84, 87
structuring messages

with JSON, 93–98
styling messages, 93, 97
testing, 85

timestamps
credentials, 220
sharing images in text

chat, 120
text chat messages, 94–

96

to(), multipeer connections,
139

toggleMic(), 109

toggleVideo(), 110

toggling A/V
adding, 98–117
building, 105–117
disabling for undetected

devices, 180–182, 187
multipeer connections,

148, 167–171
sharing peer status, 112–

117
wiring logic, 108–112

tracks
accessing with media

permissions, 40, 42
adding, 46
adding for available de-

vices, conditionally,
174, 181, 193–195

adding in multipeer con-
nections, 155

event handler setup, 46
looping through, 103
multipeer connections,

closures, 160–164
receiving, 59
removing for removed de-

vices, 186–190
sending, 49
vs. streams, 39

tranceiver objects, xiii

transition property, 98

Trickle ICE, 202, 216, 218

TURN servers
about, 197
configuring and enabling,

217–223
defined, 199
deployment with custom,

214–223
fingerprinting messages,

217
NAT and, 199
testing, 218

TURNSECRET environment vari-
able, 221

typeof, 113

U
Uncomplicated Firewall (ufw),

203, 215

unmute, 59

unshift(), 89

unsigned shorts, 75

URLS
configuring app for de-

ployment, 200
starting server and, 8

urls property, 200

user agents, 25

user interfaces (UI), see inter-
faces

user media permissions,
see permissions

V
variables

destructuring assign-
ment, 48

variable references and
multipeer connections,
157

versions
Firefox, 6
Git, 207
Node.js, 2
npm, 2
Safari, 7

video calling app, see al-

so camera; microphone;
text chat; testing; toggling;
videos

about, xi
interface, 11–25

videos
aspect ratio, 78, 194
autoplay, 15, 147
disabling audio, 15, 40

disappearing, 78
elements, 14
filters, 63–73
full-screen, disabling,

15, 147
grid of, styling, 149
multipeer connections

and generating struc-
tures on the fly, 145–
150

muting, 15
placeholder images, 15
size of, 20, 149
styling for text chat fea-

ture, 77
styling video elements, 20
toggling camera, 98–117
visual effects, 64–73

viewport units, 76

VPN environments, 217

W
warnings

deprecated dependencies,
3

self-signed certificates,
4, 8–10

Web Real-Time Communica-
tion, see WebRTC

WEB_ROOT, 209

WebRTC, see also connec-
tions; data channels; deploy-
ment; negotation; signaling
channels

about, xi–xiii
vs. client-server architec-

ture, 25
development environment

setup, 1–10
as front-end technology,

25–27
low-level objects, 174
server-, platform-, and

system-based imple-
mentations, xiii

WebSockets, 25, 212

Windows
openssl installation, 4
Windows Subsystem for

Linux, 2

write(), 220

www directory, 3

Z
z-index, 78

.zshrc file, 5

Index • 244

Thank you!
We hope you enjoyed this book and that you’re already thinking about what

you want to learn next. To help make that decision easier, we’re offering

you this gift.

Head on over to https://pragprog.com right now, and use the coupon code

BUYANOTHER2024 to save 30% on your next ebook. Offer is void where

prohibited or restricted. This offer does not apply to any edition of The

Pragmatic Programmer ebook.

And if you’d like to share your own expertise with the world, why not propose

a writing idea to us? After all, many of our best authors started off as our

readers, just like you. With up to a 50% royalty, world-class editorial services,

and a name you trust, there’s nothing to lose. Visit https://pragprog.com/become-
an-author/ today to learn more and to get started.

Thank you for your continued support. We hope to hear from you again

soon!

The Pragmatic Bookshelf

SAVE 30%!

Use coupon code

BUYANOTHER2024

https://pragprog.com
https://pragprog.com/become-an-author/
https://pragprog.com/become-an-author/

Rediscovering JavaScript
JavaScript is no longer to be feared or loathed—the

world’s most popular and ubiquitous language has

evolved into a respectable language. Whether you’re

writing front-end applications or server-side code, the

phenomenal features from ES6 and beyond—like the

rest operator, generators, destructuring, object literals,

arrow functions, modern classes, promises, async, and

metaprogramming capabilities—will get you excited

and eager to program with JavaScript. You’ve found

the right book to get started quickly and dive deep into

the essence of modern JavaScript. Learn practical tips

to apply the elegant parts of the language and the

gotchas to avoid.

Venkat Subramaniam

(286 pages) ISBN: 9781680505467. $45.95

https://pragprog.com/book/ves6

Simplifying JavaScript
The best modern JavaScript is simple, readable, and

predictable. Learn to write modern JavaScript not by

memorizing a list of new syntax, but with practical

examples of how syntax changes can make code more

expressive. Starting from variable declarations that

communicate intention clearly, see how modern prin-

ciples can improve all parts of code. Incorporate ideas

with curried functions, array methods, classes, and

more to create code that does more with less while

yielding fewer bugs.

Joe Morgan

(282 pages) ISBN: 9781680502886. $47.95

https://pragprog.com/book/es6tips

https://pragprog.com/book/ves6
https://pragprog.com/book/es6tips

Node.js 8 the Right Way
Node.js is the platform of choice for creating modern

web services. This fast-paced book gets you up to speed

on server-side programming with Node.js 8, as you

develop real programs that are small, fast, low-profile,

and useful. Take JavaScript beyond the browser, ex-

plore dynamic language features, and embrace evented

programming. Harness the power of the event loop and

non-blocking I/O to create highly parallel microservices

and applications. This expanded and updated second

edition showcases the latest ECMAScript features,

current best practices, and modern development

techniques.

Jim R. Wilson

(334 pages) ISBN: 9781680501957. $33.95

https://pragprog.com/book/jwnode2

Async JavaScript
With the advent of HTML5, front-end MVC, and

Node.js, JavaScript is ubiquitous—and still messy.

This book will give you a solid foundation for managing

async tasks without losing your sanity in a tangle of

callbacks. It’s a fast-paced guide to the most essential

techniques for dealing with async behavior, including

PubSub, evented models, and Promises. With these

tricks up your sleeve, you’ll be better prepared to

manage the complexity of large web apps and deliver

responsive code.

Trevor Burnham

(104 pages) ISBN: 9781937785277. $17

https://pragprog.com/book/tbajs

https://pragprog.com/book/jwnode2
https://pragprog.com/book/tbajs

Design and Build Great Web APIs
APIs are transforming the business world at an increas-

ing pace. Gain the essential skills needed to quickly

design, build, and deploy quality web APIs that are

robust, reliable, and resilient. Go from initial design

through prototyping and implementation to deployment

of mission-critical APIs for your organization. Test,

secure, and deploy your API with confidence and avoid

the “release into production” panic. Tackle just about

any API challenge with more than a dozen open-source

utilities and common programming patterns you can

apply right away.

Mike Amundsen

(330 pages) ISBN: 9781680506808. $45.95

https://pragprog.com/book/maapis

Design It!
Don’t engineer by coincidence—design it like you mean

it! Grounded by fundamentals and filled with practical

design methods, this is the perfect introduction to

software architecture for programmers who are ready

to grow their design skills. Ask the right stakeholders

the right questions, explore design options, share your

design decisions, and facilitate collaborative workshops

that are fast, effective, and fun. Become a better pro-

grammer, leader, and designer. Use your new skills to

lead your team in implementing software with the right

capabilities—and develop awesome software!

Michael Keeling

(358 pages) ISBN: 9781680502091. $41.95

https://pragprog.com/book/mkdsa

https://pragprog.com/book/maapis
https://pragprog.com/book/mkdsa

The Way of the Web Tester
This book is for everyone who needs to test the web.

As a tester, you’ll automate your tests. As a developer,

you’ll build more robust solutions. And as a team,

you’ll gain a vocabulary and a means to coordinate

how to write and organize automated tests for the web.

Follow the testing pyramid and level up your skills in

user interface testing, integration testing, and unit

testing. Your new skills will free you up to do other,

more important things while letting the computer do

the one thing it’s really good at: quickly running

thousands of repetitive tasks.

Jonathan Rasmusson

(256 pages) ISBN: 9781680501834. $29

https://pragprog.com/book/jrtest

Explore It!
Uncover surprises, risks, and potentially serious bugs

with exploratory testing. Rather than designing all tests

in advance, explorers design and execute small, rapid

experiments, using what they learned from the last

little experiment to inform the next. Learn essential

skills of a senior explorer, including how to analyze

software to discover key points of vulnerability, how

to design experiments on the fly, how to hone your

observation skills, and how to focus your efforts.

Elisabeth Hendrickson

(186 pages) ISBN: 9781937785024. $29

https://pragprog.com/book/ehxta

https://pragprog.com/book/jrtest
https://pragprog.com/book/ehxta

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by professional developers for professional

developers. The titles continue the well-known Pragmatic Programmer style and continue

to garner awards and rave reviews. As development gets more and more difficult, the Prag-

matic Programmers will be there with more titles and products to help you stay on top of

your game.

Visit Us Online
This Book’s Home Page

https://pragprog.com/book/ksrtc
Source code from this book, errata, and other resources. Come give us feedback, too!

Keep Up-to-Date

https://pragprog.com
Join our announcement mailing list (low volume) or follow us on Twitter @pragprog for new

titles, sales, coupons, hot tips, and more.

New and Noteworthy

https://pragprog.com/news
Check out the latest Pragmatic developments, new titles, and other offerings.

Buy the Book
If you liked this ebook, perhaps you’d like to have a paper copy of the book. Paperbacks are

available from your local independent bookstore and wherever fine books are sold.

Contact Us
https://pragprog.com/catalogOnline Orders:

support@pragprog.comCustomer Service:

translations@pragprog.comInternational Rights:

academic@pragprog.comAcademic Use:

http://write-for-us.pragprog.comWrite for Us:

https://pragprog.com/book/ksrtc
https://pragprog.com
https://pragprog.com/news
https://pragprog.com/catalog
support@pragprog.com
translations@pragprog.com
academic@pragprog.com
http://write-for-us.pragprog.com

	Cover
	Table of Contents
	Acknowledgments
	Preface
	Your WebRTC Journey
	Who Should Read This Book?
	What’s Covered (And What’s Not)
	How This Book Is Organized
	Online Resources

	1. Preparing a WebRTC Development Environment
	Installing Node.js
	Downloading the Supporting Code and Installing Dependencies
	Serving HTTPS in Development
	Choosing a Development Browser
	Starting and Stopping the Server

	2. Working with a Signaling Channel
	Preparing a Basic Peer-to-Peer Interface
	Adding Video Elements: Self and Peer
	Styling the Core App Elements
	Adding Functionality to the Call Button in JavaScript
	Positioning WebRTC as a Front-End Technology
	Using a Lightweight Signaling Channel
	Connecting to the Signaling Channel

	3. Establishing a Peer-to-Peer Connection
	Requesting User-Media Permissions
	Setting Up the Peer Connection
	Building Connection Logic to the “Perfect Negotiation” Pattern
	Receiving Media Tracks
	Testing Out Your First Peer-to-Peer App

	4. Handling Data Channels
	Adding Basic Visual Effects to User Videos
	Determining Peer-Connection States
	Applying Filters Remotely with Data Channels
	Uniquely Identifying Data Channels
	Adding a Text-Chat Feature
	Adding Logic to Handle Chat Events
	Setting Up the Text-Chat Data Channel
	Building a Message Queue

	5. Streaming Complex Data
	Structuring Chat Messages in JSON
	Adding Mic and Camera Toggles
	Refining the Initial Properties on Self and Peer
	Building A/V Toggles
	Sharing Features over Data Channels
	Sending Images over the Chat
	Sending and Receiving Binary Data

	6. Managing Multipeer Connections
	Learning from a Failed Peer-to-Peer Call
	Working with a Multipeer-Ready Signaling Channel
	Revising the Signaling Logic on the Client
	Generating Video Structures on the Fly
	Initializing Peers as Needed
	Fleshing out the Skeletal Signaling Callbacks
	Working with Peer IDs in the handleScSignal() Callback
	Restructuring WebRTC Callbacks with Closures
	Sharing Features over Multipeer Data Channels

	7. Managing User Media
	Determining Device Availability
	Detecting Device Changes
	Removing User Media for Remote Peers
	Programmatically Recognizing Denied Media Permissions
	Setting and Applying Media Constraints Objects

	8. Deploying WebRTC Apps to Production
	Configuring a WebRTC App for Public Deployment
	Configuring a Server to Host Your WebRTC App
	Deploying Your App with Git
	Monitoring Your App with PM2
	Configuring Nginx for Reverse Proxies
	Setting Up Your Own STUN/TURN Server

	A1. Connection Negotiation in Legacy Browsers
	Implementing Backward-Compatible Fixes

	Bibliography
	Index
	– SYMBOLS –
	– A –
	– B –
	– C –
	– D –
	– E –
	– F –
	– G –
	– H –
	– I –
	– J –
	– K –
	– L –
	– M –
	– N –
	– O –
	– P –
	– Q –
	– R –
	– S –
	– T –
	– U –
	– V –
	– W –
	– Z –

